Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, synthetic molecular nanomachines (MNMs) that rotate unidirectionally in response to UV light excitation have been used to produce nanomechanical action on live cells to kill them through the drilling of holes in their cell membranes. In the work here, visible-light-absorbing MNMs are designed and synthesized to enable nanomechanical activation by 405 nm light, thereby using a wavelength of light that is less phototoxic than the previously employed UV wavelengths. Visible-light-absorbing MNMs that kill pancreatic cancer cells upon response to light activation are demonstrated. Evidence is presented to support the conclusion that MNMs do not kill cancer cells by the photothermal effect when used at low optical density. In addition, MNMs suppress the formation of reactive oxygen species, leaving nanomechanical action as the most plausible working mechanism for cell killing under the experimental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b21497 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!