Simultaneous control of Gaussian curvature and buckling direction by swelling of asymmetric trilayer hydrogel hybrids.

Soft Matter

Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, South Korea.

Published: January 2020

Trilayer polymer films consisting of a thermoresponsive hydrogel, poly(diethyl acrylamide) (PDEAM), sandwiched by rigid layers of a glassy polymer, poly(para-methylstyrene) (PpMS), patterned into parallel striped features are prepared and used to drive temperature-responsive reversible anisotropic expansion. Significant swelling occurs along the direction perpendicular to the stripes, while very little swelling is observed along the direction parallel to the stripes, leading to an overall swelling anisotropy of 1.17. Introducing a difference Δ in the widths of the stripes on the top to bottom surfaces causes the films to roll upon swelling, where both the magnitude and sign of the resulting curvature can be controlled by varying Δ. Using patterns of concentric circular lines (analogous to +1 defects in liquid crystalline polymers), we demonstrate the swelling-induced formation of cone-like shapes, where the buckling direction of each unit can be programmed through local variations in Δ. This trilayer concept provides a simple way to simultaneously control both the Gaussian curvature and direction of buckling in shape-morphing hydrogels, with advantages for accessing smaller length-scales compared to existing methods.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm01922gDOI Listing

Publication Analysis

Top Keywords

control gaussian
8
gaussian curvature
8
buckling direction
8
direction
5
swelling
5
simultaneous control
4
curvature buckling
4
direction swelling
4
swelling asymmetric
4
asymmetric trilayer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!