Multiplication and division of the orbital angular momentum of light with diffractive transformation optics.

Light Sci Appl

1Department of Physics and Astronomy 'G. Galilei', University of Padova, via Marzolo 8, 35131 Padova, Italy.

Published: December 2019

We present a method to efficiently multiply or divide the orbital angular momentum (OAM) of light beams using a sequence of two optical elements. The key element is represented by an optical transformation mapping the azimuthal phase gradient of the input OAM beam onto a circular sector. By combining multiple circular-sector transformations into a single optical element, it is possible to multiply the value of the input OAM state by splitting and mapping the phase onto complementary circular sectors. Conversely, by combining multiple inverse transformations, the division of the initial OAM value is achievable by mapping distinct complementary circular sectors of the input beam into an equal number of circular phase gradients. Optical elements have been fabricated in the form of phase-only diffractive optics with high-resolution electron-beam lithography. Optical tests confirm the capability of the multiplier optics to perform integer multiplication of the input OAM, whereas the designed dividers are demonstrated to correctly split up the input beam into a complementary set of OAM beams. These elements can find applications for the multiplicative generation of higher-order OAM modes, optical information processing based on OAM beam transmission, and optical routing/switching in telecom.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892886PMC
http://dx.doi.org/10.1038/s41377-019-0222-2DOI Listing

Publication Analysis

Top Keywords

input oam
12
orbital angular
8
angular momentum
8
oam
8
optical elements
8
oam beam
8
combining multiple
8
complementary circular
8
circular sectors
8
input beam
8

Similar Publications

Spin-Orbit-Locking Vectorial Metasurface Holography.

Adv Mater

December 2024

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.

Vectorial metasurface holography, allowing for independent control over the amplitude, phase, and polarization distribution of holographic images enabled by metasurfaces, plays a crucial role in the realm of optical display, optical, and quantum communications. However, previous research on vectorial metasurface holography has typically been restricted to single degree of freedom input and single channel output, thereby demonstrating a very limited modulation capacity. This work presents a novel method to achieve multi-channel vectorial metasurface holography by harnessing spin-orbit-locking vortex beams.

View Article and Find Full Text PDF

Vortex beams (VBs) have the potential to support high-capacity optical communications. However, a typical VB carries only a single orbital angular momentum (OAM) in space, limiting its high-capacity communication. We propose controllably simultaneous generation of high-quality VB arrays with multiple OAMs, creating the independent multi-channel space in which the OAM mode can be flexibly manipulated at the corresponding spatial location.

View Article and Find Full Text PDF

In this work, the propagation of OAM modes in multimode interference (MMI) waveguides, as the basic elements in many integrated optical devices, is studied to utilize their benefits in integrated OAM applications. OAM modes shape the OAM-maintaining image at the specific length of an MMI waveguide. As the most effective parameters on the properties of the generated image, waveguide's width (W), topological charge ( ) and waist radius (WR) of the input OAM modes are investigated.

View Article and Find Full Text PDF

In this paper, we proposed a 2 × 2 multiple-input multiple-output (MIMO) dual spiral octagonal prism liquid dielectric resonator antenna (DRA) with snake-shaped defective ground structure (DGS) for space multiplexing of orbital angular momentum (OAM). The DRA element adopts an inner and outer nested dual spiral structure filled with 0.035 g/ml of brine outside and a cylinder filled with distilled water inside.

View Article and Find Full Text PDF

In this paper, we explore the distribution of the orbital angular momentum (OAM) in the coaxial vortex superposition states based on the independent propagation principle of light in this interference process. We find that in this case, some specific singular points exist in the spatial intensity distribution. The first type of singular point is located at the center point of the spatial intensity distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!