A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PiggyBac transposon system with polymeric gene carrier transfected into human T cells. | LitMetric

PiggyBac transposon system with polymeric gene carrier transfected into human T cells.

Am J Transl Res

Henan Provincial Key Laboratory of Immunology and Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital Zhengzhou 450003, China.

Published: November 2019

CAR-T cell-based immunotherapy has shown great promise in clinical trials for the treatment of hematological malignancies. The majority of these trials utilize retroviral and lentiviral vectors to introduce CAR transgene. In spite of its satisfactory efficiency, the concerns about the potential carcinogenicity and complicated synthesis procedure restrict widespread clinical applications of viral vectors. Recent studies show that transposon-based gene transfer is a safer and simpler non-viral approach for stable transgene expression. Here, we developed an in house made polymeric nanomicelles carrier for piggyBac (PB) transposon delivery to primary T lymphocytes. The properties, transfection efficiency and toxicity of this carrier was analyzed. Results indicated that nanomicelles produced in our study were stable and reduction-sensitive. These micelles can completely condense DNA and mediate transfection with efficiency of average 30.2% with high cell viability (> 80%). Furthermore, incorporating piggyBac transposase elements into polyplexes promoted persistent expression of the transgene (up to 55%). At the end of culture, CAR-T cells mainly exhibited memory phenotype and consisted of CD3CD8 T cells. The cytotoxicity of these CAR-T cells was average 17% at 20:1 ratio. In conclusion, polymeric nanomicelles provide a flexible and safe method for gene delivery to T lymphocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895516PMC

Publication Analysis

Top Keywords

piggybac transposon
8
polymeric nanomicelles
8
transfection efficiency
8
car-t cells
8
transposon system
4
system polymeric
4
polymeric gene
4
gene carrier
4
carrier transfected
4
transfected human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!