Platinum-based chemotherapy is still widely applied for the treatment of advanced non-small cell lung cancer (NSCLC). However, acquired chemoresistance compromises the curative effect of this drug. In this study, we found that glucose-6-phosphate dehydrogenase (G6PD), a critical enzyme of the pentose phosphate pathway, contributed to cisplatin resistance in NSCLC. The experimental results showed that transforming growth factor beta 1 (TGFβ1) increased the expression of G6PD by activating the forkhead box protein M1-high mobility group AT-hook 1-G6PD (FOXM1-HMGA1-G6PD) transcriptional regulatory pathway, in which TGFβ1 inhibited the ubiquitination and degradation of FOXM1 protein. Additionally, HMGA1 induced TGFβ1 expression, and neutralized TGFβ1 in the culture medium downregulated HMGA1 levels, suggesting the existence of a TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop and its role in maintaining G6PD expression. Further investigations showed that exogenous TGFβ1 enhanced the cisplatin resistance of NSCLC cells, while disrupting the FOXM1-HMGA1-G6PD pathway, thereby sensitizing the cells to cisplatin. Consistently, the TGFβ1-FOXM1-HMGA1-G6PD axis was confirmed in NSCLC tissues, and overactivation of this axis predicted poor survival in NSCLC patients. Collectively, the results of this study demonstrate that the TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop plays a crucial role in the cisplatin resistance of NSCLC by upregulating the expression of G6PD, providing a potential therapeutic target to restore chemosensitivity in cisplatin-resistant NSCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895501PMC

Publication Analysis

Top Keywords

cisplatin resistance
16
tgfβ1-foxm1-hmga1-tgfβ1 positive
12
positive feedback
12
feedback loop
12
resistance nsclc
12
non-small cell
8
cell lung
8
lung cancer
8
g6pd expression
8
expression g6pd
8

Similar Publications

Cisplatin (CIS) is a broad-spectrum anticancer drug widely used in the clinic; however, one of its side effects is that it can cause intestinal damage such as loss of appetite, vomiting, and diarrhea in patients. Epigallocatechin gallate (EGCG) is one of the main active substances in green tea, which has the effects of antitumor multiple drug resistance, antioxidation, and antiinflammatory properties. The aim of this study was to explore the protective effect of EGCG on CIS-induced intestinal injury in rats.

View Article and Find Full Text PDF

Combating cisplatin-resistant lung cancer using a coiled-coil peptides modified membrane fused drug delivery system.

J Control Release

January 2025

State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China. Electronic address:

Drug resistance to chemotherapy in treating cancers becomes an increasingly serious challenge, which leads to treatment failure and poor patient survival. Drug-resistant cancer cells normally reduce intracellular accumulation of drugs by controlling drug uptake and promoting drug efflux, which severely limits the efficacy of chemotherapy. To overcome this problem, a membrane fused drug delivery system (MF-DDS) was constructed to treat cisplatin (DDP)-resistant lung cancer (A549-DDP) by delivering DDP via membrane fusion using a complementary coiled-coil forming peptides (CPK/CPE).

View Article and Find Full Text PDF

Shared chemoresistance genes in ESCC and cervical Cancer: Insights from pharmacogenomics and Mendelian randomization.

Int Immunopharmacol

January 2025

Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China; Ultrapathology (Biomedical Electron Microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; FuRong Laboratory, Changsha City, Hunan Province, China. Electronic address:

Background: Neoadjuvant chemotherapy, particularly the use of platinum-based compounds and taxanes, is pivotal in the treatment of epithelial-derived tumors, such as cervical cancer and esophageal squamous cell carcinoma (ESCC); however, resistance remains a significant challenge. Utilizing Mendelian randomization (MR) with pharmacogenomics offers a novel approach to understanding the genetic underpinnings of drug responses, thereby aiding in personalized treatment.

Methods: Single-cell RNA sequencing (scRNA-seq) analysis revealed a shared cellular subpopulation of CD8 + T effector memory (CD8 + TEM) cells that are pivotal in mediating chemotherapy resistance in ESCC and cervical cancer.

View Article and Find Full Text PDF

Decoding the role of SLC25A5 in osteosarcoma drug resistance and CD8+ T cell exhaustion: The therapeutic potential of phyllanthin.

Phytomedicine

December 2024

Department of Hematology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Xining, Qinghai, China; Department of Hematology, The Qinghai Provincial People's Hospital, Xining, Qinghai, China. Electronic address:

Osteosarcoma is an aggressive malignant bone tumor with an obscure etiology, as well as high prevalence and poor prognosis in children and adolescents. We aimed to investigate the pathogenesis of osteosarcoma through a comprehensive analysis of the tumor immune microenvironment (TIME) using multiple single-cell RNA sequencing datasets. SLC25A5, a gene implicated in cellular aging, significantly influenced osteosarcoma development by altering the TIME and promoting CD8+ T cell exhaustion, which contributed to reduced chemosensitivity.

View Article and Find Full Text PDF
Article Synopsis
  • Ovarian cancer is the most deadly gynecological cancer, with current chemotherapy often ineffective due to drug resistance, especially in advanced stages.
  • A new treatment using a nanoformulation called Bola/IM targets ovarian cancer stem cells (CSCs) more effectively than imatinib alone, utilizing a specific mechanism to inhibit cancer growth and spread.
  • The Bola/IM formulation shows promising results in lab models and enhances the effectiveness of cisplatin, making it a strong candidate for improving treatment for metastatic ovarian cancer.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!