Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The analysis and prediction of small molecule binding sites is very important for drug discovery and drug design. The traditional experimental methods for detecting small molecule binding sites are usually expensive and time consuming, and the tools for single species small molecule research are equally inefficient. In recent years, some algorithms for predicting binding sites of protein-small molecules have been developed based on the geometric and sequence characteristics of proteins. In this paper, we have proposed SmoPSI, a classification model based on the XGBoost algorithm for predicting the binding sites of small molecules, using protein sequence information. The model achieved better results with an AUC of 0.918 and an ACC of 0.913. The experimental results demonstrate that our method achieves high performances and outperforms many existing predictors. In addition, we also analyzed the binding residues and nonbinding residues and finally found the PSSM; hydrophilicity, hydrophobicity, charge, and hydrogen bonding have obviously different effects on the binding-site predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6877956 | PMC |
http://dx.doi.org/10.1155/2019/1926156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!