Objective To establish and optimize the prokaryotic expression method for the recombinant mouse myelin proteolipid protein (PLP, 139-208 aa) which is a critical immunogenic polypeptide of PLP. Methods The sequence coding for PLP139-208 polypeptide was cloned into pET-32a(+) vector. Afterwards, the expression vector prepared in this research was transformed into E. coli BL21, and the recombinant PLP polypeptide was induced to express by isopropyl-β-D-thiogalactoside (IPTG). Two key prokaryotic expression conditions, IPTG's induction length and temperature, were analyzed for further optimization. The recombinant PLP polypeptide was induced to express by the expression method under the optimal expression conditions, and then was purified by Ni-NTA agarose and amylose resin. Finally, the gain of PLP139-208 polypeptide was verified by Western blot analysis. Results The results in the combinatorial optimization revealed that the expression of PLP139-208 was obtained at a satisfactory level when it was incubated at 23DegreesCelsius for 20 hours with the IPTG concentration of 0.5 mmol/L. Conclusion The optimized prokaryotic expression method for the recombinant mouse PLP139-208 was successfully established and effectively performed. This will shed light on the further researches on the improved preparation for experimental autoimmune encephalitis (EAE, an animal model of multiple sclerosis) and the underlying mechanism underlying PLP-induced autoimmune demyelination.
Download full-text PDF |
Source |
---|
Biosci Microbiota Food Health
September 2024
Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
Although the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been extensively developed since its discovery for eukaryotic and prokaryotic genome editing and other genetic manipulations, there are still areas warranting improvement, especially regarding bacteria. In this study, BRD0539, a small-molecule inhibitor of Cas9 (SpCas9), was used to suppress the activity of the nuclease during genetic modification of , as well as to regulate CRISPR interference (CRISPRi). First, we developed and validated a CRISPR-SpCas9 system targeting the gene of .
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Human Microbiology Institute, New York, NY, 10014, USA.
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Veterinary Parasitology, U. P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India.
This study is the first to conduct a sero-surveillance of Bovine Tropical Theileriosis (BTT) caused by the protozoan parasite Theileria annulata (T. annulata) using a recombinant Tams1 protein-based dot-ELISA in cattle, and to compare its efficacy with plate-ELISA, single PCR, nested PCR, and blood microscopy. The goal was to identify the most effective method for the early and accurate detection of theileriosis, which significantly impacts livestock through reduced milk yield and increased mortality.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, Beijing, China.
Unlabelled: Acetate/acetyl-CoA interconversion is an interesting metabolic node, primarily catalyzed by a set of various enzymes in prokaryotes. is a promising haloarchaeaon, capable of utilizing acetate as a sole carbon source for biosynthesis of high value-added products. Here, we have reported the key enzymes that catalyzed acetate activation in .
View Article and Find Full Text PDFNat Commun
December 2024
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
Transcription factor binding sites (TFBSs) are important sources of evolutionary innovations. Understanding how evolution navigates the sequence space of such sites can be achieved by mapping TFBS adaptive landscapes. In such a landscape, an individual location corresponds to a TFBS bound by a transcription factor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!