The endocannabinoid system (ECS), modulated by metabolites of linoleic acid (LA), is important in regulating cardiovascular function. In pregnancy, LA is vital for foetal development. We investigated the effects of elevated LA in H9c2 cardiomyoblasts in vitro and of a high linoleic acid (HLA, 6.21%) or low linoleic acid (LLA, 1.44%) diet during pregnancy in maternal and offspring hearts. H9c2 cell viability was reduced following LA exposure at concentrations between 300 and 1000 µM. HLA diet decreased cannabinoid receptor type 2 (CB2) mRNA expression in foetal hearts from both sexes. However, HLA diet increased CB2 expression in maternal hearts. The mRNA expression of fatty acid amide hydrolase (FAAH) in foetal hearts was higher in females than in males irrespective of diet and N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) mRNA expression showed an interaction between diet and sex. Data indicate that a high LA diet alters cell viability and CB2 expression, potentially influencing cardiac function during pregnancy and development of the offspring's heart.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S2040174419000813DOI Listing

Publication Analysis

Top Keywords

linoleic acid
16
mrna expression
12
function pregnancy
8
cell viability
8
hla diet
8
foetal hearts
8
cb2 expression
8
diet
6
acid
5
hearts
5

Similar Publications

Specific plasma metabolite profile in intestinal Behçet's syndrome.

Orphanet J Rare Dis

January 2025

Department of Rheumatology and Immunology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.

Background: Intestinal Behçet's syndrome (IBS) has high morbidity and mortality rates with serious complications. However, there are few specific biomarkers for IBS. The purposes of this study were to investigate the distinctive metabolic changes in plasma samples between IBS patients and healthy people, active IBS and inactive IBS patients, and to identify candidate metabolic biomarkers which would be useful for diagnosing and predicting IBS.

View Article and Find Full Text PDF

Background: Oils from various sources are vital nutritional components with a variety of roles in our body. Niger seed (Guzoita abyssinica) is endemic to Ethiopia and is among the major oil seed crops grown in the country. The fatty acid composition and the concentration of other bioactive phytochemicals in it vary with species type, geographical origin, cultivation season, and varietal types.

View Article and Find Full Text PDF

Introduction: Long-term fasting (LF) activates an adaptative response to switch metabolic fuels from food glucose to lipids stored in adipose tissues. The increase in free fatty acid (FFA) oxidation during fasting triggers health benefits. We questioned if the changes in lipid metabolism during LF could affect lipids in cell membranes in humans.

View Article and Find Full Text PDF

The red imported fire ants (RIFAs) are a globally important invasive pest that severely affects the ecosystem and human health, and its current control is primarily through chemical pesticides. However, the extensive use of chemical pesticides causes environmental problems, and alternative strategies for controlling this pest are being explored. In our study, we aimed to design a deep eutectic solvent (DES)-CaCO system in which RIFAs were used as target insects to increase the lethal activity and behavioural regulation effects on RIFAs via contact and feeding.

View Article and Find Full Text PDF

Spectroscopic techniques and molecular docking were employed to explore the binding mechanism and structural characteristics of β-lactoglobulin (β-lg) with linoleic acid. The research revealed that the interaction between β-lg and linoleic acid was primarily governed by static quenching. The attachment of linoleic acid to β-lg happened naturally via hydrophobic forces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!