As flame retardants, organophosphate is recognized as a global environmental contaminant because of its wide application. This contaminant is hardly degradable by hydrolysis in the environment due to its special physicochemical properties. Therefore, it is of urgent needs to study the microbial degradation of organophosphate. Through continuous enrichment, we isolated one bacterial consortium, named YC-BJ1, from leachate of waste treatment plant in Beijing. The bacterial consortium YC-BJ1 could efficiently degrade 99.8% of triphenyl phosphate (TPhP) and 91.9% of tricresyl phosphate (TCrP) with the concentration of 100 mg/L within 4 days. Besides aryl phosphates, it could degrade chloro-phosphates, tris(1,3-dichloroisopropyl) phosphate (TDCPP) and tris(2-chloroethyl) phosphate (TCEP) by 16.5% and 22.0% respectively. The degradation of the consortium on TPhP was optimized through a broad range of temperature (15-40 ℃), pH (5.0-12.0) and salinity (0%-4%). 16S rRNA gene-based metagenomic analysis revealed that Hyphomicrobium (38.80%), Chryseobacterium (17.57%) and Sphingopyxis (17.46%) were the dominant genera of the consortium YC-BJ1. Compared with the reported organophosphorus flame retardants (OPFRs) degrading bacteria and microflora, the mixed microflora YC-BJ1 exhibited great advantages in degradation efficiency and environmental adaptability, demonstrating its wide application potential. The enrichment and isolation of highly efficient degrading flora can provide abundant microbial resources for the degradation of OPFRs and the bioremediation towards OPFRs-contaminated environments, and also lay a solid foundation for the exploration of its degradation mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.190195 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!