AI Article Synopsis

  • Metabolic changes are crucial for the growth of tumor cells, but the processes behind how tumors start, especially in colorectal cancer (CRC), are not well understood.
  • In early stages of CRC, there is a specific increase in glycolysis and a decrease in a protein called mitochondrial pyruvate carrier (MPC), which plays a key role in linking glycolysis to glucose metabolism in mitochondria.
  • Studies show that inhibiting MPC leads to more tumors in mouse models, indicating that the regulation of pyruvate metabolism is vital for starting cancer development.

Article Abstract

Although metabolic adaptations have been demonstrated to be essential for tumor cell proliferation, the metabolic underpinnings of tumor initiation are poorly understood. We found that the earliest stages of colorectal cancer (CRC) initiation are marked by a glycolytic metabolic signature, including downregulation of the mitochondrial pyruvate carrier (MPC), which couples glycolysis and glucose oxidation through mitochondrial pyruvate import. Genetic studies in Drosophila suggest that this downregulation is required because hyperplasia caused by loss of the Apc or Notch tumor suppressors in intestinal stem cells can be completely blocked by MPC overexpression. Moreover, in two distinct CRC mouse models, loss of Mpc1 prior to a tumorigenic stimulus doubled the frequency of adenoma formation and produced higher grade tumors. MPC loss was associated with a glycolytic metabolic phenotype and increased expression of stem cell markers. These data suggest that changes in cellular pyruvate metabolism are necessary and sufficient to promote cancer initiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004878PMC
http://dx.doi.org/10.1016/j.cmet.2019.11.002DOI Listing

Publication Analysis

Top Keywords

mitochondrial pyruvate
12
tumor initiation
8
pyruvate carrier
8
glycolytic metabolic
8
regulation tumor
4
initiation
4
initiation mitochondrial
4
pyruvate
4
metabolic
4
carrier metabolic
4

Similar Publications

Testicular ageing is accompanied by a series of morphological changes, while the features of mitochondrial dysfunction remain largely unknown. Herein, we observed a range of age-related modifications in testicular morphology and spermatogenic cells, and conducted single-cell RNA sequencing on young and old testes in Drosophila. Pseudotime trajectory revealed significant changes in germline subpopulations during ageing.

View Article and Find Full Text PDF

Pleozymes: Pleiotropic Oxidized Carbon Nanozymes Enhance Cellular Metabolic Flexibility.

Nanomaterials (Basel)

December 2024

Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.

Our group has synthesized a pleiotropic synthetic nanozyme redox mediator we term a "pleozyme" that displays multiple enzymatic characteristics, including acting as a superoxide dismutase mimetic, oxidizing NADH to NAD, and oxidizing HS to polysulfides and thiosulfate. Benefits have been seen in acute and chronic neurological disease models. The molecule is sourced from coconut-derived activated charcoal that has undergone harsh oxidization with fuming nitric acid, which alters the structure and chemical characteristics, yielding 3-8 nm discs with broad redox potential.

View Article and Find Full Text PDF

Background: Acetyl phosphate (AcP) is a microbial intermediate involved in the central bacterial metabolism. In bacteria, it also functions as a donor of acetyl and phosphoryl groups in the nonenzymatic protein acetylation and signal transduction. In host, AcP was detected as an intermediate of the pyruvate dehydrogenase complex, and its appearance in the blood was considered as an indication of mitochondrial breakdown.

View Article and Find Full Text PDF

Cardiac diseases remain one of the leading causes of death globally, often linked to ischemic conditions that can affect cellular homeostasis and metabolism, which can lead to the development of cardiovascular dysfunction. Considering the effect of ischemic cardiomyopathy on the global population, it is vital to understand the impact of ischemia on cardiac cells and how ischemic conditions change different cellular functions through post-translational modification of cellular proteins. : To understand the cellular function and fine-tuning during stress, we established an ischemia model using neonatal rat ventricular cardiomyocytes.

View Article and Find Full Text PDF

Objectives: To explore the mechanism by which Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) regulates lipopolysaccharide (LPS)-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages.

Methods: Macrophage cell lines with overexpressed WAVE1 (mouse BMDM and human THP1 cells) were prepared. The macrophages were treated with LPS (500 ng/mL) to simulate sepsis-induced inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!