A new ratiometric fluorescent strategy for detection of alizarin red (ARS) was designed based on the fluorescence of CDs and scattered light of scatterer. The CDs-ARS system can be used to detect Pb based on that the complexation between ARS and Pb. With the addition of ARS, the fluorescence of CDs was apparently quenched via inner filter effect (IFE). Resonance Rayleigh Scattering (RRS) at 350 nm was enhanced by an increase in the number of scatterer. The value of ln(I/I) was linearly correlated with ARS concentration in the range of 0-80 μM, and the detection limit for ARS was calculated to be 68.1 nM. When Pb was added to the CDs-ARS system, the complexation of ARS with Pb increased the size of the scatterer, resulting in the increase of the RRS intensity at 350 nm. Due to the affinity between ARS and Pb, the overlap of the emission spectra of CDs and the absorption spectra of ARS was reduced, resulting in the IFE effect was inhibited and the recovery of the fluorescence of CDs. The value of I/I linearly increased with the addition of Pb within the range of 10-50 μM, the limit of detection was 36.8 nM. As for practical application, CDs and CDs-ARS were applied to detect ARS and Pb in tap water and poor water, respectively. The recovery values were obtained to be 95.4-98.8% and 93.4-101.7%. Furthermore, the system of CDs-ARS has been successfully applied to H1299 cell imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2019.117843 | DOI Listing |
RSC Chem Biol
December 2024
State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria.
View Article and Find Full Text PDFSmall Methods
January 2025
Institute of Particle Technology (LFG), Department of Chemical and Biological, Engineering (CBI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058, Erlangen, Germany.
Knowledge of the structure-property relationships of functional nanomaterials, including, for example, their size- and composition-dependent photoluminescence (PL) and particle-to-particle variations, is crucial for their design and reproducibility. Herein, the Angstrom-resolution capability of an analytical ultracentrifuge combined with an in-line multiwavelength emission detection system (MWE-AUC) for measuring the sedimentation coefficient-resolved spectrally corrected PL spectra of dispersed nanoparticles is demonstrated. The capabilities of this technique are shown for giant-shell CdSe/CdS quantum dots (g-QDs) with a PL quantum yield (PL QY) close to unity capped with oleic acid and oleylamine ligands.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt. Electronic address:
Background: The current synthetic strategies for carbon dots (CDs) are usually time-consuming, rely on complicated processes, and need high temperatures and energy. Recent studies have successfully synthesized CDs at room temperature. Unfortunately, most CDs synthesized at room temperature are obtained under harsh reaction conditions, prepared using aromatic precursors, or need a long time to generate.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China. Electronic address:
Accurately detecting cysteine (Cys) in vivo is crucial for diagnosing Cys-related diseases. A novel ratiometric fluorescent probe featuring dual near-infrared emission is developed in this study for the in vivo ratio imaging of Cys. The probe comprises a hemicyanine organic small-molecule dye (HCy-CYS) with specific Cys recognition capabilities covalently coupled with carbon dots (CDs) synthesized using glutathione (GSH) as the carbon source (GCDs), forming a unique composite nanofluorescent probe (GCDs@CYS).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China. Electronic address:
As a novel fluorescent carbon nanomaterial, carbon dots are restricted by their poor fluorescence in the solid state, although they exhibit favorable photoluminescence in solution. N-doped carbon dots (N-CDs) and solid-state fluorescence films were prepared using green and renewable cellulose-derived materials, respectively. The hydrogen bonding network of carboxymethyl cellulose (CMC) inhibits the self-aggregation behavior of N-CDs, which leads to solid-state fluorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!