Pesticide exposure is regarded as a contributing factor to the high gross loss rates of managed colonies of Apis mellifera. Pesticides enter the hive through contaminated nectar and pollen carried by returning forager honey bees or placed in the hive by beekeepers when managing hive pests. We used an in vitro rearing method to characterize the effects of seven pesticides on developing brood subjected dietary exposure at worse-case environmental concentrations detected in wax and pollen. The pesticides tested included acaricides (amitraz, coumaphos, fluvalinate), insecticides (chlorpyrifos, imidacloprid), one fungicide (chlorothalonil), and one herbicide (glyphosate). The larvae were exposed chronically for six days of mimicking exposure during the entire larval feeding period, which is the worst possible scenario of larval exposure. Survival, duration of immature development, the weight of newly emerged adult, morphologies of the antenna and the hypopharyngeal gland, and gene expression were recorded. Survival of bees exposed to amitraz, coumaphos, fluvalinate, chlorpyrifos, and chlorothalonil was the most sensitive endpoint despite observed changes in many developmental and physiological parameters across the seven pesticides. Our findings suggest that pesticide exposure during larvae development may affect the survival and health of immature honey bees, thus contributing to overall colony stress or loss. Additionally, pesticide exposure altered gene expression of detoxification enzymes. However, the tested exposure scenario is unlikely to be representative of real-world conditions but emphasizes the importance of proper hive management to minimize pesticide contamination of the hive environment or simulates a future scenario of increased contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.113420DOI Listing

Publication Analysis

Top Keywords

honey bees
12
pesticide exposure
12
amitraz coumaphos
8
coumaphos fluvalinate
8
gene expression
8
exposure
7
pesticides
5
hive
5
frequently encountered
4
encountered pesticides
4

Similar Publications

Detection of glyphosate, glufosinate, and their metabolites in multi-floral honey for food safety.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

January 2025

Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy.

Beehives can accumulate environmental contaminants as bees gather pollen, propolis, and water from their surroundings, contaminating hive products like honey. Moreover, in multifloral environments, bees can interact with plants treated with different pesticides, often causing higher pesticides concentrations in multi-floral honey than in mono-floral varieties. Glyphosate and glufosinate are both widely used herbicides.

View Article and Find Full Text PDF

Recycling honey bee drone brood for sustainable beekeeping.

J Econ Entomol

December 2024

Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria.

Pollination by insects is vital for global agriculture, with honey bees (Apis mellifera L.) being the most important pollinators. Honey bees are exposed to numerous stressors, including disease, pesticides, and inadequate nutrition, resulting in significant colony losses.

View Article and Find Full Text PDF

The proteomic content of Varroa destructor gut varies according to the developmental stage of its host.

PLoS Pathog

December 2024

Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5174, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, France.

The nutritional physiology of parasites is often overlooked although it is at the basis of host-parasite interactions. In the case of Varroa destructor, one of the major pests of the Western honey bee Apis mellifera, the nature of molecules and tissues ingested by the parasite is still not completely understood. Here, the V.

View Article and Find Full Text PDF

Evaluating the Effects of Flavonoids on Insects: Implications for Managing Pests Without Harming Beneficials.

Insects

December 2024

Biological Control of Pests Research Unit, Agricultural Research Service, United States Department of Agriculture, Stoneville, MS 38776, USA.

Flavonoids have multiple functions, including host-plant defense against attacks from herbivorous insects. This manuscript reviewed and analyzed the scientific literature to test the hypothesis that flavonoids can be utilized to manage pests without causing significant harm to beneficials. The methodology involved using recognized literature databases, e.

View Article and Find Full Text PDF

The Phytochemical Properties of Low-Grade Longan Syrup and Its Potential Use as a Dietary Supplement for Honey Bees.

Insects

November 2024

Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.

Climate change significantly affects honey bee populations and their access to natural food sources, demanding alternative economic feed sources. Longan stands out as the most important fruit crop in Southeast Asia, but with a surplus of low-grade fruit that is not suitable for the market. This study investigates the potential of longan syrup as an alternative carbohydrate source for honey bees by measuring sugar composition, phytochemical profiles, feed, and survival, as well as the resulting gut microbial changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!