Temperature-Induced Catch-Slip to Slip Bond Transit in Plasmodium falciparum-Infected Erythrocytes.

Biophys J

Department of Biomedical Engineering, National University of Singapore, Singapore; Singapore-Massachusetts Institute of Technology Alliance for Research and Technology Centre, Infectious Diseases IRG, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore. Electronic address:

Published: January 2020

Plasmodium falciparum malaria-infected red blood cells (IRBCs), or erythrocytes, avoid splenic clearance by adhering to host endothelium. Upregulation of endothelial receptors intercellular adhesion molecule-1 (ICAM-1) and cluster of differentiation 36 (CD36) are associated with severe disease pathology. Most in vitro studies of IRBCs interacting with these molecules were conducted at room temperature. However, as IRBCs are exposed to temperature variations between 37°C (body temperature) and 41°C (febrile temperature) in the host, it is important to understand IRBC-receptor interactions at these physiologically relevant temperatures. Here, we probe IRBC interactions against ICAM-1 and CD36 at 37 and 41°C. Single bond force-clamp spectroscopy is used to determine the bond dissociation rates and hence, unravel the nature of the IRBC-receptor interaction. The association rates are also extracted from a multiple bond flow assay using a cellular stochastic model. Surprisingly, IRBC-ICAM-1 bond transits from a catch-slip bond at 37°C toward a slip bond at 41°C. Moreover, binding affinities of both IRBC-ICAM-1 and IRBC-CD36 decrease as the temperature rises from 37 to 41°C. This study highlights the significance of examining receptor-ligand interactions at physiologically relevant temperatures and reveals biophysical insight into the temperature dependence of P. falciparum malaria cytoadherent bonds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950811PMC
http://dx.doi.org/10.1016/j.bpj.2019.11.016DOI Listing

Publication Analysis

Top Keywords

slip bond
8
interactions physiologically
8
physiologically relevant
8
relevant temperatures
8
bond
7
temperature
6
temperature-induced catch-slip
4
catch-slip slip
4
bond transit
4
transit plasmodium
4

Similar Publications

Accurate models for predicting drop dynamics, such as maximum drop departure sizes, are crucial for estimating heat transfer rates during condensation on superhydrophobic (SH) surfaces. Previous studies have focused on examining the heat transfer rates for SH surfaces under the influence of gravity or vapor flowing over the surface. This study investigates the impact of surface solid fraction and texture scale on drop mobility in a condensing environment with a humid air flow.

View Article and Find Full Text PDF

The CRTS (China Railway Track System) II slab ballastless track is widely utilized in high-speed railway construction owing to its excellent structural integrity. However, its interfacial performance deteriorates under high-temperature conditions, leading to significant damage in structural details. Furthermore, the evolution of its performance under these conditions has not been comprehensively studied.

View Article and Find Full Text PDF

This research investigates the flexural performance of slabs reinforced with high-strength steel-strand mesh (HSSM) and engineered cementitious composites (ECCs). By employing finite element analysis (FEA) and theoretical modeling, this study aims to deepen the understanding of how these materials behave under bending stresses. A finite element model was developed to simulate the nonlinear behavior of ECCs during bending, considering critical elements such as tensile and compressive damage, as well as bond-slip interactions between the steel strands and the ECCs.

View Article and Find Full Text PDF

This study introduces high-strength non-prestressed steel strands as reinforcement materials into Engineered Cementitious Composites (ECCs) and developed a novel high-strength stainless-steel-strand-mesh (HSSWM)-reinforced ECC with enhanced toughness and corrosion resistance. The bonding performance between HSSWM and an ECC is essential for facilitating effective cooperative behavior. The bond behavior between the HSSWM and ECC was investigated through theoretical analysis.

View Article and Find Full Text PDF

Influence of Specimen Width on Crack Propagation Process in Lightly Reinforced Concrete Beams.

Materials (Basel)

November 2024

State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China.

Article Synopsis
  • Traditional 2D models for studying concrete fractures often overlook how specimen width affects crack behavior, particularly in reinforced concrete beams with varying crack lengths.
  • A 3D numerical method was developed to simulate crack propagation in lightly reinforced concrete beams, utilizing nonlinear spring elements to accurately represent concrete softening and bond-slip between steel and concrete.
  • Comparisons with experimental data showed that the 3D model provided more accurate load-displacement curves, revealing that 2D models significantly overestimate external loads during the initial loading stage.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!