Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As new human-computer interaction technology, brain-computer interface has been widely used in various fields of life. The study of EEG signals cannot only improve people's awareness of the brain, but also establish new ways for the brain to communicate with the outside world. This paper takes the motion imaging EEG signal as the research object and proposes an innovative semi-supervised model called KNN-based smooth auto-encoder (k-SAE). K-SAE looks for the nearest neighbor values of the samples to construct a new input and learns the robust features representation by reconstructing this new input instead of the original input, which is different from the traditional automatic encoder (AE). The Gaussian filter is selected as the convolution kernel function in k-SAE to smooth the noise in the feature. Besides, the data information and spatial position of the feature map are recorded by max-pooling and unpooling, that help to prevent loss of important information. The method is applied to two data sets for feature extraction and classification experiments of motor imaging EEG signals. The experimental results show that k-SAE achieves good recognition accuracy and outperforms other state-of-the-art recognition algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.artmed.2019.101747 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!