: MicroRNAs (miRNAs or miRs) play an important role in the initiation and development of chondrosarcoma (CS). However, the role of miR-21-5p in CS progression and its underlying molecular mechanisms remains unclear.: miR-21-5p expression was measured by qRT-PCR. Cell proliferation, migration, and invasion were detected by CCK-8 and Transwell assay. Dual-luciferase reporter assay was used to validate the target of miR-21-5p. Western blot was applied to explore the expressions of CCR7 and EMT biomarkers. Then, the xenograft model was established to confirm the effects of miR-21-5p.: miR-21-5p was significantly downregulated in CS tissues and cells and negatively correlated with grade, recurrence, and 5-year overall survival. , miR-21-5p caused G0/G1 cell cycle arrest and induced apoptosis by decreasing cyclin D1 expression and Bcl-2/Bax ratio. miR-21-5p suppressed cell migration and invasion of CS cells by inhibiting epithelial-mesenchymal transition (EMT). , miR-21-5p inhibited xenograft tumor formation of SW1353 cells. Mechanistically, miR-21-5p targeted the 3'-UTR of C-C chemokine receptor 7 (CCR7) mRNA to inhibit its expression. Overexpression of CCR7 reversed the inhibitory effects of miR-21-5p on CS cell behaviors. However, the silencing of CCR7 enhanced the inhibitory effects of miR-21-5p on CS cells. Besides, the overexpression of miR-21-5p or silencing of CCR7 obviously reduced the expression levels of p-STAT3, p-p56, and p-IκBα.: miR-21-5p targeted CCR7 expression to inhibit the STAT3 and NF-κB signaling, thereby suppressing cell proliferation, migration, invasion, and EMT in CS cells, which might be a novel mechanistic study for CS therapy.: 3'-UTR: 3'-untranslated region; CCR7: C-C chemokine receptor type 7; CS: chondrosarcoma; DMEM: dulbecco's modified eagle's medium; EMT: epithelial-mesenchymal transition; HEK-293T: human embryonic kidney-293T; miR-21-5p: microRNA-21-5p; miR-NC: negative control miRNA; SD: standard deviation; si-CCR7: CCR7 siRNAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03008207.2019.1702650 | DOI Listing |
Int J Mol Sci
January 2025
Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain.
Several microRNAs (miRNAs) emerged as powerful regulators of fibrotic processes, "fibromiRs", and can also influence the expression of genes responsible for the generation of reactive oxygen species, "redoximiRs". We aimed to investigate whether plasma exosomes from hypertensive and diabetes patients are enriched in fibromiRs and redoximiRs using deep sequencing technology and their association with relevant signalling pathways implicated in oxidative stress and fibrogenesis by GO terms and KEGG pathways. RNA-Seq analysis from P-EXO identified 31 differentially expressed (DE) miRNAs in patients compared to controls, of which 77% are biofluid specific.
View Article and Find Full Text PDFBiomolecules
January 2025
BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
This study aims to develop a protocol for respiratory disease-associated biomarker discovery by combining urine proteome studies with urinary exosome components analysis (i.e., miRNAs).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Glioblastoma (GBM) is highly malignant and grows rapidly, and there is currently a lack of effective treatments. Metabolism provides the basis for the occurrence and development of GBM. Pyruvate dehydrogenase A1 (PDHA1) is a key component in both the tricarboxylic acid cycle and glycolysis, playing an important role in the metabolic processes related to cancer, but its role in GBM remains unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, China.
This study explores the influence of miR-21 and its interaction with the target gene Neurotrophin-3 (NTF3) in cervical cancer (CC). We employed bioinformatics tools, including DIANA, Targetscan, miRDB, and miRDIP, to predict the target genes of miR-21. Immunohistochemistry, RT-qPCR, and Western blotting were performed to quantify the expression levels of miR-21-5p and NTF3 in cervical cancer cells.
View Article and Find Full Text PDFBMJ Paediatr Open
January 2025
Medical Biochemistry, Istanbul Atlas University Faculty of Medicine, Istanbul, Türkiye.
Objective: The limited predictive effect of genotype on familial Mediterranean fever (FMF) phenotype suggests that epigenetic factors and alternative mechanisms that may cause IL-1β release could contribute to phenotypic heterogeneity. The objective of this study was to examine the role of IL-1β levels and miR-21-5p, cathepsin B and pyrin levels, which were identified as potential factors causing IL-1β release through the use of bioinformatics tools, in the pathogenesis of FMF and their relationship with disease severity.
Materials And Methods: 50 paediatric patients with FMF and 40 healthy children were enrolled in this study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!