Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phytochemicals are important dietary constituents with antioxidant properties. They affect various signaling pathways involved in the overall maintenance of interior of the cell. Arsenic, an environmental toxicant, is well known for its deleterious consequences, such as various diseases, including cancers in humans. Mitochondria are the cell's powerhouse that fuel all metabolic energy requirements. Dysfunctional mitochondria due to stressors may lead to abnormal functioning of the organelle, hampering the crucial cellular cross talks and ultimately leading to cancer. Application of phytochemicals against arsenic-induced mitochondrial disorders may be a preventive measure to counteract the ruinous impacts of the metalloid. In recent years, extensive research on the role of mitochondria in cancer gives a better understanding of the areas the organelle covers in maintaining a healthy cell or in inducing carcinogenicity. Detailed knowledge of the mitochondrial governances would enable researchers to administer numerous phytochemicals to ameliorate altered oxidative phosphorylation, mitochondrial membrane potential (MMP), mitochondrial oxidative stress, unfolded protein response, glycolysis, or even apoptosis. In this review, we have addressed how various phytochemicals belonging to diverse classes combat against arsenic-induced mitochondrial oxidative stress, depletion of MMP, cell cycle abrogation, apoptosis, glycolytic damages, oncogenic regulations, chaperones, mitochondrial complexes, and mitochondrial membrane pore formation in both and models. Insightful application of mitoprotective phytochemicals against arsenic-induced mitochondrial oxidative stress and carcinogenesis may guide researchers to develop preclinical chemopreventive agents to fight arsenic toxicity in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ars.2019.7950 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!