Bioaccumulation and physiological responses of the Coontail, Ceratophyllum demersum exposed to copper, zinc and in combination.

Ecotoxicol Environ Saf

Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket, 83120, Thailand. Electronic address:

Published: February 2020

Ceratophyllum demersum is a submerged aquatic angiosperm which is fast growing in contaminated water. This plant has no roots and so takes up nutrients from the water column without the complicating factor of differential shoot/root uptake of nutrients. This study aimed to compare the bioaccumulative capacities of Cu, Zn and their combination by C. demersum and physiological responses (growth, chlorophyll content, and photosynthetic rate) of C. demersum to Cu and Zn. Additionally, pulse amplitude modulation (PAM) technology and integrating sphere spectrometer were applied to detect copper and zinc toxicity effects on the light reactions of photosynthesis C. demersum is an aquatic plant that could be a good accumulator of Cu and Zn in actual solution in the water column. Additionally, RGR (relative growth rate) and chlorophyll content of C. demersum show that toxic effects of Cu or Zn increased over time. Cu and Zn effects manifested themselves more slowly than expected: at least 5 to 10 d were needed for noticeable effects both macroscopically (physical appearance), biochemical (chlorophyll content) and from measurements of photosynthesis using Pulse Amplitude Modulation (PAM) fluorometry. Moreover, the combination of Cu and Zn caused more toxic effect than either Cu or Zn separately. Whole plant scans using an integrating sphere spectrophotometer showed that Cu, Zn and Zn + Cu toxicity effects could be identified from spectral scans but were not specific enough for Cu, Zn and Zn + Cu toxicity to be distinguished from one another.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.110049DOI Listing

Publication Analysis

Top Keywords

chlorophyll content
12
physiological responses
8
ceratophyllum demersum
8
copper zinc
8
water column
8
pulse amplitude
8
amplitude modulation
8
modulation pam
8
integrating sphere
8
toxicity effects
8

Similar Publications

Dufulin Impacts Plant Defense Against Tomato Yellow Leaf Curl Virus Infecting Tomato.

Viruses

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.

(TYLCV) poses a significant threat to tomato production, leading to severe yield losses. The current control strategies primarily rely on the use of pesticides, which are often nonselective and costly. Therefore, there is an urgent need to identify more environmentally friendly alternatives.

View Article and Find Full Text PDF

In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, L.

View Article and Find Full Text PDF

The mung bean ( (Linn) Wilczek.) is a major grain crop in China, but its yield is significantly impacted by weeds. However, no pre-emergence herbicides are registered for mung bean fields in the China Pesticide Information Network.

View Article and Find Full Text PDF

Thioredoxin z (TRX z) plays a significant role in chloroplast development by regulating the transcription of chloroplast genes. In this study, we identified a pentatricopeptide repeat (PPR) protein, rice albino seedling-lethal (RAS), that interacts with OsTRX z. This interaction was initially discovered by using a yeast two-hybrid (Y2H) screening technique and was further validated through Y2H and bimolecular fluorescence complementation (BiFC) experiments.

View Article and Find Full Text PDF

Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!