Cholesterol-modified lignin: A new avenue for green nanoparticles, meltable materials, and drug delivery.

Colloids Surf B Biointerfaces

State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Shandong Province, Jinan, 250353, PR China; Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA; Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA. Electronic address:

Published: February 2020

Two fractions of kraft lignin of low and high molecular weight were reacted with cholesteryl chloroformate (Chol.Cl) to produce a modified lignin that demonstrated very high hydrophobicity. Surprisingly, both fractions displayed discernible melting points as opposed to the starting lignin. The suspension in water also gave rise to nanoparticles that displayed sizes in the range of 200-500 nm that were shown to satisfactorily load and release folic acid, a representative hydrophobic molecule, within the context of drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2019.110685DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
cholesterol-modified lignin
4
lignin avenue
4
avenue green
4
green nanoparticles
4
nanoparticles meltable
4
meltable materials
4
materials drug
4
delivery fractions
4
fractions kraft
4

Similar Publications

Impulse control disorders in Parkinson's disease: What's new?

J Neurol

January 2025

Parkinson's Disease Research Clinic, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.

Impulse Control Disorders (ICDs) are increasingly recognized as a significant non-motor complication in Parkinson's disease (PD), impacting patients and their caregivers. ICDs in PD are primarily associated with dopaminergic treatments, particularly dopamine agonists, though not all patients develop these disorders, indicating a role for genetic and other clinical factors. Studies over the past few years suggest that the mesocorticolimbic reward system, a core neural substrate for impulsivity, is a key contributor to ICDs in PD.

View Article and Find Full Text PDF

Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.

View Article and Find Full Text PDF

Hydrogels are flexible materials characterized by a 3D network structure, which possess high water content and adjustable physicochemical properties. They have found widespread applications in tissue engineering, electronic skin, drug delivery, flexible sensors, and photothermal therapy. However, hydrogel networks often exhibit swelling behavior in aqueous environments, which can result in structural degradation and a loss of gel performance.

View Article and Find Full Text PDF

Nanoscale water behavior and its impact on adsorption: A case study with CNTs and diclofenac.

J Chem Phys

January 2025

Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas, Brazil.

Water is a fundamental component of life, playing a critical role in regulating metabolic processes and facilitating the dissolution and transport of essential molecules. However, emerging contaminants, such as pharmaceuticals, pose significant challenges to water quality and safety. Nanomaterial-based technologies emerge as a promising solution for removing those contaminants from water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!