From in vitro to in silico: Modeling and recombinant production of DT-Diaphorase enzyme.

Int J Biol Macromol

Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran. Electronic address:

Published: January 2020

AI Article Synopsis

  • DT-Diaphorase (DTD) is a key enzyme important in biotechnology, specifically for glucose and pyruvate biosensors, and plays a role in detecting Phenylketonuria disease.
  • The researchers successfully cloned, expressed, and purified recombinant DTD in E. coli, optimizing enzyme production and purification through various biochemical techniques.
  • Molecular dynamics simulations were conducted to assess the enzyme's structural interactions and activity at different temperatures, revealing significant interactions between NADH and the PHE 232 residue at higher temperatures.

Article Abstract

DT-Diaphorase (DTD) belonging to the oxidoreductase family, is among the most important enzymes and is of great significance in present-day biotechnology. Also, it has potential applications in glucose and pyruvate biosensors. Another important role of the DTD enzyme is in the detection of Phenylketonuria disease. According to the above demands, at first, we tried to study molecular cloning and production of recombinant DTD in E. coli BL21 strain. We have successfully cloned, expressed, and purified functionally active diaphorase. The amount of enzyme was increased in 10-h using IPTG induction, and the recombinant protein was purified by Ni-NTA agarose affinity chromatography. After that, the kinetic and thermodynamic parameters of the enzyme, optimum temperature and pH were also investigated to find more in-depth information. In the end, to represent the connections between the structures and function of this enzyme, the molecular dynamics simulations have been considered at two temperatures in which DTD had maximum and minimum activity (310 and 293 K, respectively). The results of MD simulations indicated that the interaction between NADH with phenylalanine 232 residue at 310 K is more severe than other residues. So, to investigate the interaction details of NADH/PHE 232 the DFT calculations were done.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.12.029DOI Listing

Publication Analysis

Top Keywords

enzyme
5
vitro silico
4
silico modeling
4
modeling recombinant
4
recombinant production
4
production dt-diaphorase
4
dt-diaphorase enzyme
4
enzyme dt-diaphorase
4
dtd
4
dt-diaphorase dtd
4

Similar Publications

Idesia polycarpa Maxim (IPM) cake meal, a major by-product of oil extraction, is often discarded in large quantities, resulting in considerable waste. This study explored the extraction of IPM polysaccharides (IPMPs) from cake meal using the innovative ultrasonic-assisted three-phase partitioning (UTPP) method, in comparison with conventional techniques, including acid, medium-temperature alkali, chelating agent, and enzyme extraction methods. The IPMP-UT prepared via UTPP method achieved superior extraction efficiency (10.

View Article and Find Full Text PDF

Sugarcane Pan-Transcriptome Identifying a Master Gene Regulating Lignin and Sugar Traits.

J Agric Food Chem

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.

Sugarcane has the most complex polyploid genome in the world, and sugar-related traits are one of the most important aims in sugarcane breeding. It is essential to construct a representative pan-transcriptome that contains all transcripts of a species for studies on genetic diversity, population expression, and omics analyses in sugarcane. In this study, we constructed the first comprehensive pan-transcriptome for sugarcane, and 8434 highly reliable open reading frames were found, which were not aligned with any published sugarcane genome.

View Article and Find Full Text PDF

PHENYLALANINE AMMONIA-LYASE 2 regulates secondary metabolism and confers manganese tolerance in Stylosanthes guianensis.

Plant Physiol

January 2025

Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rual Affairs/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.

Stylo (Stylosanthes guianensis) is a tropical legume that exhibits considerable tolerance to manganese (Mn) toxicity, which severely constrains plant growth in acidic soils. To elucidate the Mn detoxification mechanisms in stylo, this study investigated the excess Mn-regulated metabolic profile of stylo roots and examined the role of metabolic enzymes in Mn tolerance. Excess Mn triggered oxidative stress in the two stylo genotypes tested.

View Article and Find Full Text PDF

Proteomics- and metabolomics-based analysis of the regulation of germination in Norway maple and sycamore embryonic axes.

Tree Physiol

January 2025

Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France.

Norway maple and sycamore belong to the Acer genus and produce desiccation-tolerant and desiccation-sensitive seeds, respectively. We investigated the seed germination process at the imbibed and germinated stages using metabolomic and proteomic approaches to determine why sycamore seeds germinate earlier and are more successful at establishing seedlings than Norway maple seeds under controlled conditions. Embryonic axes and embryonic axes with protruded radicles were analyzed at the imbibed and germinated stages, respectively.

View Article and Find Full Text PDF

Aging Oocytes: Exploring Apoptosis and Its Impact on Embryonic Development in Common Carp (Cyprinus carpio).

J Anim Sci

January 2025

Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodňany 389 01, Czech Republic.

Ovulation, fertilization, and embryo development are orchestrated and synchronized processes essential for the optimal health of offspring. Post-ovulatory aging disrupts this synchronization and impairs oocyte quality. In addition, oocyte aging causes fertilization loss and poor embryo development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!