Cervical cancer is one of the most common cancers threatening women's health, and the persistent infection of high-risk human papillomavirus (HPV) is closely related to the pathogenesis of cervical cancer and many other cancers. The carcinogenesis is a complex process from precancerous lesion to cancer, which provides an excellent window for clinical prevention, diagnosis, and treatment. However, despite the various preventions and treatments such as HPV screening, prophylactic HPV vaccines, surgery, radiotherapy, and chemotherapy, the disease burden remains heavy worldwide. Currently, three types of prophylactic vaccines, quadrivalent HPV vaccine, bivalent HPV vaccine, and a new nonavalent HPV vaccine, are commercially available. Although these vaccines are effective in protecting against 90% of HPV infection, they provide limited benefits to eliminate pre-existing infections. Therefore, new progress has been made in the development of therapeutic vaccines. Therapeutic vaccines differ from prophylactic vaccines in that they aim to stimulate cell-mediated immunity and kill the infected cells rather than neutralizing antibodies. This review aims at systematically covering the progress, current status and future prospects of various vaccines in development for the prevention and treatment of HPV-associated lesions and cancers and laying foundations for the development of the new original vaccine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2019.11.039 | DOI Listing |
Comput Struct Biotechnol J
December 2024
Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
Persistent infection with high-risk human papillomavirus (hrHPV) is a major cause of cervical cancer. The effectiveness of current HPV-DNA testing, which is crucial for early detection, is limited in several aspects, including low sensitivity, accuracy issues, and the inability to perform comprehensive hrHPV typing. To address these limitations, we introduce MTIOT (Multiple subTypes In One Time), a novel detection method that utilizes machine learning with a new multichannel integration scheme to enhance HPV-DNA analysis.
View Article and Find Full Text PDFTzu Chi Med J
December 2024
Department of Obstetrics and Gynecology, College of Medicine, University of Babylon, Hilla, Iraq.
The most common STD that triggers cervical cancer is the human papillomavirus. More than 20 types of human papillomavirus (HPV) can induce uterine cervical cancer. Almost all women acquire genital HPV infection soon after their first intercourse, with most of them clearing the virus within 3 years.
View Article and Find Full Text PDFClin Cancer Res
January 2025
University Medical Center Groningen, Groningen, Netherlands.
Purpose: Human papillomavirus (HPV) infection is the major cause of (pre)malignant cervical lesions. We previously demonstrated that Vvax001, a replication-incompetent Semliki Forest virus (SFV) vaccine encoding HPV type 16 (HPV16) E6 and E7, induced potent anti-E6 and -E7 cytotoxic T-cell responses. Here, we investigated the clinical efficacy of Vvax001 in patients with HPV16-positive cervical intraepithelial neoplasia grade 3 (CIN3).
View Article and Find Full Text PDFBMC Womens Health
January 2025
School of Nursing and Midwifery, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
Background: Ovarian cancer is a leading cause of mortality worldwide. The third most prevalent gynecological cancer globally, following cervical and uterine cancer, and the third leading cause of cancer-related mortality among women in Sub-Saharan Africa, including Ethiopia. The time ovarian cancer patients have to wait between diagnosis and initiation of treatment are the indicators of quality in cancer care and influence patient outcomes.
View Article and Find Full Text PDFBMC Cancer
January 2025
Molecular Diseases & Diagnostics Division, Infinity Biochemistry, Infinity Solutions Unlimited, Sajjad Abad, Chattabal, Srinagar, 190010, Kashmir, India.
Background: Gynecological cancers (GCs) affect the reproductive system of females, and are of multiple types depending on the affected organ most common of which are cervical, endometrial, ovarian cancers. Among different risk factors for GCs, ABO blood group system is considered as one of the pivotal contributing factors for increased susceptibility of GCs. The aim of our study was to report on the demographics of GC patients and to investigate the relationship between the ABO blood group system and the risk of acquiring GC in our population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!