Aim: The primary purpose of an avalanche airbag is to prevent burial during an avalanche. Approximately twenty percent of avalanche victims deploying airbags become critically buried, however. One avalanche airbag actively deflates three minutes after deployment, potentially creating an air pocket. Our objective was to evaluate this air pocket and its potential to prevent asphyxiation.
Methods: Twelve participants were fitted with an airbag and placed prone on the snow. Participants deployed the airbag and were buried in 1.5 m of snow for 60 min with vital signs including oxygen saturation (SpO2) and end-tidal CO2 (ETCO2) measured every minute. Participants completed a post-burial survey to determine head movement within the air pocket.
Results: Eleven of the 12 participants (92%) completed 60 min of burial. Preburial baseline SpO2 measurements did not change significantly over burial time (P > 0.05). Preburial baseline ETCO2 measurements increased over the burial time (P < 0.02); only one ETCO2 value was outside of the normal ETCO2 range (35-45 mmHg). Participants reported they could move their head forward 11.2 cm (SD 4.8 cm) and backward 6.6 cm (SD 5.1 cm) with the majority of participants stated that they had enough head movement to separate the oral cavity from opposing snow if necessary. Visual examination during extrication revealed a well-defined air pocket in all burials.
Conclusion: The avalanche airbag under study creates an air pocket that appears to delay asphyxia, which could allow extra time for rescue and improve overall survival of avalanche victims.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resuscitation.2019.11.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!