Regulatory T cells (Tregs) are vital for maintaining a balanced immune response and their dysfunction is often associated with auto-immune disorders. We have previously shown that antigen-loaded anionic liposomes composed of phosphatidylcholine (PC) and phosphatidylglycerol (PG) and cholesterol can induce strong antigen-specific Treg responses. We hypothesized that altering the rigidity of these liposomes while maintaining their size and surface charge would affect their capability of inducing Treg responses. The rigidity of liposomes is affected in part by the length and saturation of carbon chains of the phospholipids in the bilayer, and in part by the presence of cholesterol. We used atomic force microscopy (AFM) to measure the rigidity of anionic OVA-containing liposomes composed of different types of PC and PG, with or without cholesterol, in a molar ratio of 4:1(:2) distearoyl (DS)PC:DSPG (Young's modulus (YM) 3611 ± 1271 kPa), DSPC:DSPG:CHOL (1498 ± 531 kPa), DSPC:dipalmitoyl (DP)PG:CHOL (1208 ± 538), DPPC:DPPG:CHOL (1195 ± 348 kPa), DSPC:dioleoyl (DO)PG:CHOL (825 ± 307 kPa), DOPC:DOPG:CHOL (911 ± 447 kPa), and DOPC:DOPG (494 ± 365 kPa). Next, we assessed if rigidity affects the association of liposomes to bone marrow-derived dendritic cells (BMDCs) in vitro. Aside from DOPC:DOPG liposomes, we observed a positive correlation between liposomal rigidity and cellular association. Finally, we show that rigidity positively correlates with Treg responses in vitro in murine DCs and in vivo in mice. Our findings underline the suitability of AFM to measure liposome rigidity and the importance of this parameter when designing liposomes as a vaccine delivery system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2019.12.003 | DOI Listing |
Nat Commun
January 2025
Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, Inserm U1291, CNRS U5051, Toulouse, France.
Protective immune responses require close interactions between conventional (Tconv) and regulatory T cells (Treg). The extracellular mediators and signaling events that regulate the crosstalk between these CD4 T cell subsets have been extensively characterized. However, how Tconv translate Treg-dependent suppressive signals at the chromatin level remains largely unknown.
View Article and Find Full Text PDFBiol Direct
January 2025
School of Medicine, South China University of Technology, Guangzhou, 510006, China.
Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.
Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.
eNeuro
January 2025
Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362002, China.
Acute ischemic stroke (AIS) is a dangerous neurological disease associated with an imbalance in Th17/Treg cells and abnormal activation of the Wnt/β-catenin signaling pathway. This study aims to investigate whether inhibition of miR-155 can activate the Wnt/β-catenin signaling pathway to improve Th17/Treg imbalance and provide neuroprotective effects against stroke. We employed a multi-level experimental design.
View Article and Find Full Text PDFCell Rep
January 2025
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan. Electronic address:
Proteasomes generate antigenic peptides presented on cell surfaces-a process that, in neuroglia, is highly responsive to external stimuli. However, the function of the self-antigens presented by CNS parenchymal cells remains unclear. Here, we report that the fidelity of neuroglial self-antigens is crucial to suppress encephalitogenic T cell responses by elevating regulatory T (Treg) cell populations.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
January 2025
Department of Geriatric Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China.
The main goal of this investigation is to find out how solute carrier family 27 member 3 (SLC27A3) is expressed in the lung tissue of mice with chronic obstructive pulmonary disease (COPD), and how it relates to lung function. A model of COPD was established by exposing organisms to cigarette smoke, followed by investigating the role of SLC27A3 in COPD through experiments conducted both in living organisms and in laboratory settings. Knockout mice lacking SLC27A3 were produced through siRNA transfection to investigate lung function and inflammatory response, using methods such as hematoxylin-eosin staining and enzyme-linked immunosorbent assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!