Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Adverse effects of pharmaceutical emerging contaminants (PECs), including antibiotics, in water supplies has been a global concern in recent years as they threaten fresh water security and lead to serious health problems to human, wildlife and the environment. However, detection of these contaminants in water sources, as well as food products, is difficult due to their low concentration. Here, we prepared a new family of magnetic molecular imprinted polymer (MMIP) networks for binding antibiotics via a microemulsion polymerization technique using vinyl silane modified FeO magnetic nanoparticles. The cross-linked polymer backbone successfully integrated with 20-30 nm magnetic nanoparticles and generated a novel porous polymeric network structure. These networks showed a high binding capacity for both templates, erythromycin and ciprofloxacin at 70 and 32 mg/g. Both MMIPs were also recyclable, retaining 75 % and 68 % of the binding capacity after 4 cycles. These MMIPs have showed a clear preference for binding the template molecules, with a binding capacity 4- to 7-fold higher than the other antibiotics in the same matrix. These results demonstrate our MMIP networks, which offered high binding capacity and selectivity as well as recyclability, can be used for both removal and monitoring hazardous antibiotic pollutants in different sources/samples and food products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.121709 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!