Global review of phthalates in edible oil: An emerging and nonnegligible exposure source to human.

Sci Total Environ

Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, CleanTech one, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Published: February 2020

AI Article Synopsis

Article Abstract

This work investigated the presence of seven major phthalates in nine different kinds of edible oils (i.e. olive, rapeseed, peanut, sesame, tea seed, corn, soybean, sunflower, and blended oil) and their potential impacts on human. The respective total average phthalates concentrations in the oils studied were found to be 6.01, 2.79, 2.63, 2.03, 1.73, 1.66, 1.57, 1.26, and 0.72 mg/kg. On the other hand, the seven main phthalates in the edible oils with the average concentration ranked from high to low were in order of DiNP, DEHP, DiDP, DBP, DiBP, DEP, and BBP, with 0.90, 0.81, 0.79, 0.71, 0.22, 0.17, and 0.10 mg/kg, respectively. The estimated maximum human daily intakes (EDI) of DEHP, DBP, DiBP, DiNP, BBP, DEP, and DiDP via edible oils were determined to be 552, 2996, 121, 356, 268, 66, and 563 μg/p/d, respectively. It was further revealed that the maximum human EDI of DEHP, DBP, BBP, and DiBP through consumption of edible oils were 2.92, 6.79, 1.24, and 1.06 times higher than those via bottled water. The calculated average estrogenic equivalence (EEQ) values of the seven major phthalates in edible oils fell into the range of 2.7-958.1 ng E/L, which were 45-396 times of those in bottled water. With published works, the complete distributions of 15 phthalates in nine kinds of edible oils were established and assessed for the health risks based on EDI and EEQ. This work provided the first evidence that edible oil is a potential source of phthalates, thus the potential adverse estrogenic effects on human health should need to be assessed in a holistic manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.135369DOI Listing

Publication Analysis

Top Keywords

edible oils
24
phthalates edible
12
edible
8
edible oil
8
major phthalates
8
phthalates kinds
8
kinds edible
8
oil potential
8
dbp dibp
8
maximum human
8

Similar Publications

Highly sensitive split ring resonator-based sensor for quality monitoring of edible oils.

Sci Rep

January 2025

Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.

This research presents the design and analysis of a compact metamaterial (MTM)-based star-shaped split-ring resonator (SRR) enclosed in a square, constructed on a cost-effective substrate for liquid chemical sensing applications. The designed structure has dimensions of 10 × 10 mm and is optimized for detecting adulteration in edible oils. When the sample holder is filled with different percentages of oil samples, the resonance frequency of the MTM-based SRR sensor shift significantly.

View Article and Find Full Text PDF

Background: Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.

View Article and Find Full Text PDF

Objective: Given the changes in trends of cannabis use (e.g., product types), this study examined latent classes of young adult use and associations with use-related outcomes.

View Article and Find Full Text PDF

Strawberry fruits are highly perishable and have a limited shelf life. Therefore, effective methods such as essential oils (EOs) and edible coatings are required to mitigate spoilage and maintain fruit quality during storage. In the current study, Echinophora platyloba EO was extracted and subsequently formulated into a nanoemulsion.

View Article and Find Full Text PDF

Non-communicable diseases (NCD) are associated with inflammation and oxidative stress which is further associated with omega-6 (ω6) and omega-3 (ω3) fatty acid (FA) imbalance favoring ω6 FA. By improving ω3 FA consumption, this imbalance can be altered to control NCD. Previously we have reported blends of flaxseed oil (FSO, ω3 FA) with palm olein (PO) or coconut oil (CO) were thermo-oxidatively stable with good storage stability and could improve ω6:ω3 ratio in cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!