Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While Co is the most effective metal for activating PMS, extensive efforts are made to develop Co/Fe species (CF) (e.g., CoFeO) for imparting magnetic properties and facilitating recovery of catalysts. When carbon substrates are doped with heteroatoms (e.g., S and N) and CF is embedded within the heteroatom-doped carbon matrix, synergies can occur to boost catalytic activities. This study proposes an alternative CF-bearing carbonaceous composite, a cobalt-containing Prussian Blue Analogue (PBA) (Co[Fe(CN)]) is employed as a precursor for preparing CF species embedded in N-doped carbon matrix and immobilized on S/N-co-doped carbon (SNC). Specifically, PBA in-situ grows on SNC by a heat treatment of trithiocyanuric acid to form PBA@SNC, which is then carbonized into CF species@SNC (CF@SNC). By adopting Amaranth degradation as a model reaction, CF@SNC shows a higher catalytic activity (k = 0.230 min) than CF (k = 0.152 min) and SNC (k = 0.016 min) for activating PMS. In comparison with CoO, CF@SNC exhibits a higher catalytic activity for PMS activation. CF@SNC renders a relatively low E value (53 kJ/mol) for Amaranth degradation in comparison to other reported catalysts. These comparisons demonstrate the advantageous features of CF@SNC as a magnetic and efficient catalyst for PMS activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.125444 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!