C3-C5 Chordoma Resection and Reconstruction with a Three-Dimensional Printed Titanium Patient-Specific Implant.

World Neurosurg

Faculty of Medicine, University of New South Wales, Sydney, Australia; Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia; NeuroSpine Surgery Research Group, Sydney, Australia; Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia.

Published: April 2020

Background: With this case report, we aim to add to the clinical literature on the use of three-dimensional printed patient-specific implants in spinal surgery, show the current state of the art in patient-specific implant device design, present thorough clinical and radiographic outcomes, and discuss the suitability of titanium alloy as an implant material for patients with cancer.

Case Description: A 45-year-old man presented with neck and left arm pain combined with shoulder weakness. Imaging revealed significant destruction of the C3-C5 vertebrae, and chordoma diagnosis was confirmed by biopsy. Gross total tumor resection including multilevel corpectomy was performed in combination with reconstruction using a three-dimensional printed titanium custom implant. Custom-designed features aimed to reduce reconstruction time and result in good clinical and radiographic outcomes. Clinical scores improved postoperatively and remained improved at 17-month postoperative follow-up: visual analog scale score 10/10 preoperatively improved to 2-6/10 at 17 months; Neck Disability Index 46% preoperatively improved to 32% at 17 months. Neither dysphagia nor dysphonia remained after surgical soft tissue swelling subsided. The patient was successfully treated with proton beam therapy after surgery, with no tumor recurrence at 17-month follow-up. Radiographic assessment showed incomplete fusion at 3 months, with clinically insignificant implant subsidence (2.7 mm) and no implant migration or failure at 14 months.

Conclusions: Computer-aided preoperative planning with three-dimensional printed biomodels and custom implant resulted in relatively quick and simple reconstruction after tumor resection, with good clinical and radiographic outcomes at 17 and 14 months, respectively. For patients with primary tumors who may require follow-up radiotherapy or postoperative magnetic resonance imaging, metals used in the devices cause significant imaging artifact.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2019.11.167DOI Listing

Publication Analysis

Top Keywords

three-dimensional printed
16
clinical radiographic
12
radiographic outcomes
12
reconstruction three-dimensional
8
printed titanium
8
patient-specific implant
8
tumor resection
8
custom implant
8
good clinical
8
preoperatively improved
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!