A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. | LitMetric

Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications.

Acta Biomater

School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia. Electronic address:

Published: January 2020

Magnesium (Mg) and its alloys are considered promising biodegradable implant materials because of their strength and natural degradation in the human body. However, the high corrosion rate of pure Mg in the physiological environment leads to rapid degradation before adequate bone healing. This mismatch between bone healing and the degradation of Mg implants supports the development of new Mg alloys with the addition of other suitable alloying elements in order to achieve simultaneously high corrosion resistance and desirable mechanical properties. This study systematically investigates the microstructure, mechanical properties, corrosion behavior, and biocompatibility of Mg-based alloys with the addition of different concentrations of scandium (Sc), i.e., Mg-0.6Zr-0.5Sr-xSc (x = 0.5, 1, 2, 3 wt.%). Results indicated that high concentration of Sc in strontium (Sr)-containing Mg alloys can alter their microstructures by suppressing the intermetallic phases along the grain boundaries and improve the corrosion resistance by forming chemically stable Sc oxide layers on the surfaces of the Mg alloys. Cytotoxicity assessment revealed that the Sc containing Mg alloys did not significantly alter the viability of human osteoblast-like SaOS2 cells. This study highlights the advantages of using Sc as an alloying element to simultaneously tune Mg alloys with higher strength and slower degradation. STATEMENT OF SIGNIFICANCE: Rare earth elements such as scandium (Sc) with both a high solid-solubility and strong affinity towards oxygen can improve the mechanical and corrosion properties of magnesium (Mg) alloys. However, the feasibility of Sc-containing Mg alloys as biodegradable implant materials is scarcely reported. This study investigates the effects of different Sc concentrations on the mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys. Our findings indicated that the addition of Sc significantly improves the mechanical and corrosion properties of Mg-Zr-Sr alloys. Moreover, in vitro cytotoxicity assessment of the Mg-Zr-Sr-Sc alloys did not show any adverse effects on the viability of osteoblast-like cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2019.12.001DOI Listing

Publication Analysis

Top Keywords

mechanical corrosion
16
alloys
13
mg-zr-sr-sc alloys
12
biodegradable implant
12
corrosion biocompatibility
8
biocompatibility properties
8
properties mg-zr-sr-sc
8
alloys biodegradable
8
magnesium alloys
8
implant materials
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!