The Clostridium perfringens alpha toxin (CPA), encoded by the plc gene, is the causative pathogen of gas gangrene, which is a lethal infection. In this study, we used an E. coli system for the efficient production of recombinant proteins and developed a bicistronic design (BCD) expression construct consisting of two copies of the C-terminal (247-370) domain of the alpha toxin (CPA-C) in the first cistron, followed by Cholera Toxin B (CTB) linked with another two copies of CPA-C in the second cistron that is controlled by a single promoter. Rabbits were immunized twice with purified proteins (rCPA-C rCTB-CPA-C) produced in the BCD expression system, with an inactivated recombinant E. coli vaccine (RE), C. perfringens formaldehyde-inactivated alpha toxoid (FA-CPA) and C. perfringensl-lysine/formaldehyde alpha toxoid (LF-CPA) vaccines. Following the second vaccination, 0.1 mL of pooled sera of the RE-vaccinated rabbits could neutralize 12× mouse LD (100% lethal dose) of CPA, while that of the rCPA-C rCTB-CPA-C-vaccinated rabbits could neutralize 6× mouse LD of CPA. Antibody titers against CPA were also assessed by ELISA, reaching titers as high as 1:2048000 in the RE group; this was significantly higher compared to the C. perfringens alpha toxoid vaccinated groups (FA-CPA and LF-CPA). Rabbits from all vaccinated groups were completely protected from a 2× rabbit LD of CPA challenge. These results demonstrate that the recombinant proteins are able to induce a strong immune responses, indicating that they may be potentially utilized as targets for novel vaccines specifically against the C. perfringens alpha toxin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2019.105550 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!