Poly(glycerol sebacate) (PGS) is a new biodegradable polymer with good biocompatibility used in many fields of biomedicine and drug delivery. Sunitinib-loaded PGS/gelatine nanoparticles were prepared by the de-solvation method for retinal delivery and treatment of diabetic retinopathy. The nanoparticles were characterised by Fourier-transform infrared and differential scanning calorimetry. The effects of different formulation variables including drug-to-carrier ratio, gelatine-to-PGS ratio, and glycerine-to-sebacate ratio were assessed on the encapsulation efficiency (EE%), particle size, release efficiency (RE), and zeta potential of the nanoparticles. The in vitro cytotoxicity of PGS/gelatine nanoparticles was studied on L929 cells. Draize test on rabbit eyes was also done to investigate the possible allergic reactions caused by the polymer. Glycerine/sebacic acid was the most effective parameter on the EE and RE. Gelatine-to-PGS ratio had the most considerable effect on the particle size while the RE was more affected by the glycerine/sebacic acid ratio. The optimised formulation (SGD) exhibited a particle size of 282 nm, 34.6% EE, zeta potential of -8.9 mV, and RE% of about 27.3% for drug over 228 h. The 3-(4,5-dimethylthuazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated PGS/gelatine nanoparticles were not cytotoxic and sunitinib-loaded nanoparticles were not toxic at concentrations <36 nM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676034 | PMC |
http://dx.doi.org/10.1049/iet-nbt.2019.0002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!