A STELLA simulation model for in vitro dissolution testing of respirable size particles.

Sci Rep

School of Pharmacy, University of Otago, 18 Frederick St, Dunedin, 9054, New Zealand.

Published: December 2019

In vitro dissolution testing is a useful quality control tool to discriminate the formulations and to approximate the in vivo drug release profiles. A dissolution apparatus has been custom-made for dissolution testing of dry powder formulations in a small volume of stationary medium (25 μL spread over 4.91 cm area i.e. ~50 μm thick). To understand the system and predict the key parameters which influence the dissolution of respirable size particles, a simulation model was constructed using STELLA modeling software. Using this model, the permeation (dissolution followed by diffusion through the membrane) of two anti-tubercular drugs of differing solubilities, moxifloxacin (17.68 ± 0.85 mg mL) and ethionamide (0.46 ± 0.02 mg mL), from the respirable size particles and their diffusion from a solution were simulated. The simulated permeation profiles of moxifloxacin from solution and respirable size particles were similar, indicating fast dissolution of the particles. However, the simulated permeation profile of ethionamide from respirable size particles showed slower permeation compared to the solution indicating the slow dissolution of the respirable size particles of ethionamide. The sensitivity analysis suggested that increased mucus volume and membrane thickness decreased the permeation of drug. While this model was useful in predicting and distinguishing the dissolution behaviours of respirable size moxifloxacin and ethionamide, further improvement could be made using appropriate initial parameter values obtained by experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6898627PMC
http://dx.doi.org/10.1038/s41598-019-55164-0DOI Listing

Publication Analysis

Top Keywords

respirable size
28
size particles
24
dissolution testing
12
dissolution
9
simulation model
8
vitro dissolution
8
dissolution respirable
8
simulated permeation
8
respirable
7
size
7

Similar Publications

Assessing the inhalation hazard of microplastics is important but necessitates sufficient quantity of microplastics that are representative and respirable (<4 µm). Common plastics are not typically manufactured in such small sizes. Here, solvent precipitation is used to produce respirable test materials from thermoplastics polyurethane (TPU), polyamide (PA-6), polyethylene terephthalate (PET), and low-density polyethylene (LDPE).

View Article and Find Full Text PDF

Background/objectives: This study aimed to fabricate, optimize, and characterize nanostructured lipid carriers (NLCs) loaded with trans-resveratrol (TRES) as an anti-cancer drug for pulmonary drug delivery using medical nebulizers.

Methods: Novel TRES-NLC formulations (F1-F24) were prepared via hot, high-pressure homogenization. One solid lipid (Dynasan 116) was combined with four liquid lipids (Capryol 90, Lauroglycol 90, Miglyol 810, and Tributyrin) in three different ratios (10:90, 50:50, and 90:10 /), with a surfactant (Tween 80) in two different concentrations (0.

View Article and Find Full Text PDF

Background: Spray drying, whilst a popularly employed technique for powder formulations, has limited applications for large-scale proliposome manufacture.

Objectives: Thus, the aim of this study was to investigate spray drying parameters, such as inlet temperature (80, 120, 160, and 200 °C), airflow rate (357, 473, and 601 L/h) and pump feed rate (5, 15, and 25%), for individual carbohydrate carriers (trehalose, lactose monohydrate (LMH), and mannitol) for 24 spray-dried (SD) formulations (F1-F24).

Methods: Following optimization, the SD parameters were trialed on proliposome formulations based on the same carriers and named as spray-dried proliposome (SDP) formulations.

View Article and Find Full Text PDF

Inhalation exposure to respirable crystalline silica (RCS) during the fabrication of engineered stone-based kitchen countertops has been on the rise in recent years and has become a significant occupational health problem in the United States and globally. Little is known about the presence of nanocrystalline silica (NCS), i.e.

View Article and Find Full Text PDF

Unlabelled: This assessment was designed to explore and characterize the airborne particles, especially for the sub-micrometer sizes, in an underground coal mine. Airborne particles present in the breathing zone were evaluated by using both (1) direct reading real-time instruments (RTIs) to measure real-time particle number concentrations in the workplaces and (2) gravimetric samplers to collect airborne particles to obtain mass concentrations and conduct further characterizations. Airborne coal mine particles were collected via three samplers: inhalable particle sampler (37 mm cassette with polyvinyl chloride (PVC) filter), respirable dust cyclone (10 mm nylon cyclone with 37 mm Zefon cassette and PVC filter), and a Tsai diffusion sampler (TDS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!