Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The killer phenomenon in yeast () not only provides the opportunity to study host-virus interactions in a eukaryotic model but also represents a powerful tool to analyze potential coadaptional events and the role of killer yeast in biological diversity. Although undoubtedly having a crucial impact on the abundance and expression of the killer phenotype in killer-yeast harboring communities, the influence of a particular toxin on its producing host cell has not been addressed sufficiently. In this study, we describe a model system of two K1 killer yeast strains with distinct phenotypical differences pointing to substantial selection pressure in response to the toxin secretion level. Transcriptome and lipidome analyses revealed specific and intrinsic host cell adaptions dependent on the amount of K1 toxin produced. High basal expression of genes coding for osmoprotectants and stress-responsive proteins in a killer yeast strain secreting larger amounts of active K1 toxin implies a generally increased stress tolerance. Moreover, the data suggest that immunity of the host cell against its own toxin is essential for the balanced virus-host interplay providing valuable hints to elucidate the molecular mechanisms underlying K1 immunity and implicating an evolutionarily conserved role for toxin immunity in natural yeast populations. The killer phenotype in relies on the cytoplasmic persistence of two RNA viruses. In contrast to bacterial toxin producers, killer yeasts necessitate a specific immunity mechanism against their own toxin because they bear the same receptor populations as sensitive cells. Although the killer phenomenon is highly abundant and has a crucial impact on the structure of yeast communities, the influence of a particular toxin on its host cell has been barely addressed. In our study, we used two derivatives secreting different amount of the killer toxin K1 to analyze potential coadaptional events in this particular host/virus system. Our data underline the dependency of the host cell's ability to cope with extracellular toxin molecules and intracellular K1 molecules provided by the virus. Therefore, this research significantly advances the current understanding of the evolutionarily conserved role of this molecular machinery as an intrinsic selection pressure in yeast populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997729 | PMC |
http://dx.doi.org/10.1128/AEM.02446-19 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!