Duloxetine Enhances TRAIL-mediated Apoptosis AMPK-mediated Inhibition of Autophagy Flux in Lung Cancer Cells.

Anticancer Res

Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea

Published: December 2019

Background/aim: The antidepressant duloxetine is known as a serotonin-norepinephrine reuptake inhibitor, used for treating depression and anxiety. TRAIL selectively induces cell death in a variety of tumor cells by binding to its membrane death receptor (DR). The aim of the study was to examine whether duloxetine affects TRAIL-mediated apoptosis.

Materials And Methods: Cell viability and apoptosis was measured by morphological image, crystal violet staining, MTT and LDH assay. Immunocytochemistry and western blotting techniques were applied to detect autophagy and apoptosis indicator proteins. TEM assay was used to determine the autophagy.

Results: Duloxetine treatment considerably sensitizes human lung adenocarcinoma cells to TRAIL-mediated apoptosis by targeting TRAIL-DR5. Treatment with duloxetine inhibited AMPK phosphorylation and resulted in increased p62 and microtubule-associated protein 1A/1B light chain 3B-II levels, indicating inhibition of autophagy flux. Blockade of DR5 with DR5-specific small-interfering RNA negatively regulated the apoptotic effect.

Conclusion: Clinical administration of TRAIL in combination with duloxetine may serve as a therapeutic approach for the treatment of TRAIL-resistant lung cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.21873/anticanres.13877DOI Listing

Publication Analysis

Top Keywords

trail-mediated apoptosis
8
inhibition autophagy
8
autophagy flux
8
lung cancer
8
cancer cells
8
duloxetine
6
duloxetine enhances
4
enhances trail-mediated
4
apoptosis
4
apoptosis ampk-mediated
4

Similar Publications

CCN1 is a matricellular protein highly expressed in esophageal squamous cell carcinoma (ESCC) but hardly detectable in esophageal adenocarcinoma (EAC). Expression of CCN1 in EAC cells leads to TRAIL-mediated apoptosis. Unlike TRAIL, which primarily triggers cell death, APRIL and BAFF promote cell growth via NFκB signaling.

View Article and Find Full Text PDF

Autophagy is a vital mechanism that eliminates large cytoplasmic components via lysosomal degradation to maintain cellular homeostasis. The role of autophagy in cancer treatment has been studied extensively. Autophagy primarily prevents tumour initiation by maintaining genomic stability and preventing cellular inflammation.

View Article and Find Full Text PDF

Introduction: Nadofaragene firadenovec (Ad-IFNα/Syn3) is now approved for BCG-unresponsive bladder cancer (BLCA). IFNα is a pleiotropic cytokine that causes direct tumor cell killing via TRAIL-mediated apoptosis, angiogenesis inhibition, and activation of the innate and adaptive immune system. We established an immunocompetent murine BLCA model to study the effects of murine adenoviral IFNα (muAd-Ifnα) gene therapy on cancer cells and the tumor microenvironment using a novel murine equivalent of Nadofaragene firadenovec (muAd-Ifnα).

View Article and Find Full Text PDF

Induction of apoptosis in tumor cells is one of the best ways to cure cancer. While most apoptosis requires a chain of caspase activation, CASP2 can do this all by itself. The matricellular protein cellular communication network 1 (CCN1) is known for supporting some cancer growth but suppressing others.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) features progressive neurodegeneration and microglial activation that results in dementia and cognitive decline. The release of soluble amyloid (Aβ) oligomers into the extracellular space is an early feature of AD pathology. This can promote excitotoxicity and microglial activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!