As a transcription factor, STAT3 protein transduces extracellular signals to the nucleus and then activates transcription of target genes. STAT3 has been well validated as an attractive anticancer target due to its important roles in cancer initiation and progression. Identification of specific and potent STAT3 inhibitors has attracted much attention, while there has been no STAT3 targeted drug approved for clinical application. In this review, we will briefly introduce STAT3 protein and review its role in multiple aspects of cancer, and systematically summarize the recent advances in discovery of STAT3 inhibitors, especially the ones discovered in the past five years. In the last part of the review, we will discuss the possible new strategies to overcome the difficulties of developing potent and specific STAT3 inhibitors and hope to shed light on future drug design and inhibitor optimization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2019.111922 | DOI Listing |
Int J Biol Sci
January 2025
School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
Pulmonary fibrosis (PF) is a high-mortality lung disease with limited treatment options, highlighting the need for new therapies. Cyclin-dependent kinase 8 (CDK8) is a promising target due to its role in regulating transcription via the TGF-β/Smad pathway, though CDK8 inhibitors have not been thoroughly studied for PF. This study aims to evaluate the potential of E966-0530-45418, a novel CDK8 inhibitor, in mitigating PF progression and explores its underlying mechanisms.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
School of Basic Medicine, Qingdao University, Qingdao, China. Electronic address:
This study investigates the therapeutic effects of recombinant human IL-10 (rhIL-10) administered via aerosol inhalation in acute lung injury (ALI), with a particular focus on neutrophils. It explores how rhIL-10, in the presence of platelets, modulates neutrophil polarization to ameliorate acute lung injury. Initially, the ALI model established in mice demonstrated that aerosol inhalation of rhIL-10 significantly mitigated the cytokine storm in the lungs, reduced pulmonary edema, and alleviated histopathological damage to lung tissue.
View Article and Find Full Text PDFOdontology
January 2025
Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
Follicular dendritic cell-secreted protein (FDC-SP) is produced by follicular dendritic cells, periodontal ligament and junctional epithelium (JE). JE exists immediately apical to the bottom of the pocket and binds enamel with hemidesmosomes to protect the periodontium from bacterial infection. To analyze the transcriptional regulation of the FDC-SP gene by interleukin-6 (IL-6), we performed real-time PCR, Western blotting, immunofluorescence, luciferase (LUC) assays, gel mobility shift and chromatin immunoprecipitation (ChIP) assays using Ca9-22 and Sa3 gingival epithelial cells.
View Article and Find Full Text PDFArq Gastroenterol
January 2025
Universidade Estadual de Campinas, Programa de Pós-Graduação em Farmacologia, Campinas, SP, Brasil.
Background: Hepcidin's main function is to control iron availability to hematopoiesis. However, it has been shown that hepcidin may have an additional role in intestinal inflammation, as intestinal cells and leukocytes increase the production in experimental colitis and Crohn's disease.
Objective: Using an HT-29 cell as a model, we investigated the role of hepcidin in intestinal inflammation.
Molecules
December 2024
Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
Enhancer of zeste homolog 2 (EZH2) is a methyltransferase involved in cell cycle regulation, cell differentiation, and cell death and plays a role in modulating the immune response. Although it mainly functions by catalyzing the tri-methylation of H3 histone on K27 (H3K27), to inhibit the transcription of target genes, EZH2 can directly methylate several transcription factors or form complexes with them, regulating their functions. EZH2 expression/activity is often dysregulated in cancer, contributing to carcinogenesis and immune escape, thereby representing an important target in anti-cancer therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!