Pesticides in the urban environment: A potential threat that knocks at the door.

Sci Total Environ

Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia. Electronic address:

Published: April 2020

Pesticides play a pivotal role in controlling pests and disease infestations not only in urban agriculture but also in non-agricultural settings. Several pesticides like herbicides, insecticides, fungicides, rodenticides, etc. are applied unintentionally at higher concentrations even in small urban areas such as lawns, gardens and impermeable surfaces. Consequent to their indiscriminate use, both extensively and intensively, in the urban areas, contamination of pesticides poses a serious threat to the environment, living organisms and food safety. Although the fate and ecological effects of pesticides and their residues have been thoroughly understood in agricultural soils, information available in the literature on the impact of these contaminants in the urban environment is very limited and fragmentary. In fact, the fate and behaviour of pesticide residues in the urban environment are distinct from those in other ecosystems since the soils in urban areas greatly vary in their physico-chemical properties. Development of sustainable and eco-friendly approaches for remediation of even urban soils contaminated with pesticides is therefore greatly warranted. Thus, the present critical review is the first single source that provides updated knowledge on the sources, nature and extent of pesticide pollution in the urban environment, and the ecological and human health effects of pesticides and their residues. The potential of nano-encapsulation of pesticides for their application in urban settings has also been discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.134612DOI Listing

Publication Analysis

Top Keywords

urban environment
16
urban areas
12
urban
9
pesticides
8
effects pesticides
8
pesticides residues
8
environment
5
pesticides urban
4
environment potential
4
potential threat
4

Similar Publications

The advent of smart cities has brought about a paradigm shift in urban management and citizen engagement. By leveraging technological advancements, cities are now able to collect and analyze extensive data to optimize service delivery, allocate resources efficiently, and enhance the overall well-being of residents. However, as cities become increasingly interconnected and data-dependent, concerns related to data privacy and security, as well as citizen participation and representation, have surfaced.

View Article and Find Full Text PDF

In this paper, we describe the dataset captured with our proprietary data capture solution mounted on top of a Land Rover Defender vehicle. The captured data are the real data of drives on various Slovak roads. The total dataset consist of almost 33 hours of driving with a automotive grade FPD Link camera with 30 fps and with additional sensors such as high-precision GNSS sensor and modem towards mobile data connectivity LTE and 5 G.

View Article and Find Full Text PDF

Microplastic is one of the most important environmental challenges of recent decades. Although the abundance of microplastics in water sources and water bodies such as the marine were investigated in many studies, knowing the sources of microplastics requires more studies. In this study, litter was investigated as one of the challenges of urban management and the sources of primary microplastic and secondary microplastic in the urban environment.

View Article and Find Full Text PDF

Urban mobility prediction is crucial for optimizing resource allocation, managing transportation systems, and planning urban development. We propose a novel framework, GeoTemporal LSTM (GT-LSTM), designed to address the intricate spatiotemporal dynamics of urban environments. GT-LSTM integrates temporal dependencies with geographic information through a multi-modal approach that combines attention mechanisms and Recurrent Neural Networks (RNNs).

View Article and Find Full Text PDF

Recent methane surges reveal heightened emissions from tropical inundated areas.

Nat Commun

December 2024

Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Record breaking atmospheric methane growth rates were observed in 2020 and 2021 (15.2±0.5 and 17.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!