In this study, we compared removal of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in two wastewater treatment systems fed with the same primary effluent: a conventional wastewater treatment system (consisting of a trickling filter followed by an activated sludge process) versus an algal-based system, employing an extremophilic alga, Galdieria sulphuraria. Our results demonstrated that the algal system can reduce concentrations of erythromycin- and sulfamethoxazole-resistant bacteria in the effluent more effectively than the conventional treatment system. A decreasing trend of total bacteria and ARGs was observed in both the treatment systems. However, the relative ratio of most ARGs (qnrA, qnrB, qnrS, sul1) and intI1 in the surviving bacteria increased in the conventional system; whereas, the algal system reduced more of the relative abundance of qnrA, qnrS, tetW and intⅠ1 in the surviving bacteria. The role of bacteriophages in horizontal gene transfer (HGT) of ARGs in the two systems was indicated by a positive correlation between ARG absolute abundance in bacteriophage and ARG relative abundance in the bacteria. Four of the five detectable genes (qnrS, tetW, sul1 and intI1) were significantly reduced in the algal system in bacteriophage phase which signified a decrease in phage-mediated ARG transfer in the algal system. Results of this study demonstrate the feasibility of the algal-based wastewater treatment system in decreasing ARGs and ARB and in minimizing the spread of antibiotic resistance to the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992497PMC
http://dx.doi.org/10.1016/j.scitotenv.2019.134435DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
16
treatment system
16
algal system
16
system
10
removal antibiotic
8
antibiotic resistance
8
algal-based wastewater
8
system employing
8
galdieria sulphuraria
8
antibiotic resistant
8

Similar Publications

<b>Background and Objective:</b> Cadmium (Cd) is one of the heavy metal pollutants and its accumulation impacts the sustainability of marine organisms. Current research aimed to isolate and identify the cadmium-reducing bacteria from contaminated coastal sediment in Karangsong Port, Indramayu, Indonesia. The isolates were investigated for their potential to reduce cadmium and showed the cadmium reduction drastically up to 50% at 6 hrs treated under different cadmium concentrations of 0, 5, 1 and 1.

View Article and Find Full Text PDF

Studying Cationic Liposomes for Quick, Simple, and Effective Nucleic Acid Preconcentration and Isolation.

Anal Chem

January 2025

Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany.

To ensure high quality of food and water, the identification of traces of pathogens is mandatory. Rapid nucleic acid-based tests shorten traditional detection times while maintaining low detection limits. Challenging is the loss of nucleic acids during necessary purification processes, since elution off solid surfaces is not efficient.

View Article and Find Full Text PDF

This study focuses on developing biochar-based adsorbents with high adsorption capacity and rapid adsorption rates for removing boron from aqueous solutions. Hydroxy-enriched biochar composites (BC (carboxylated biochar), BC-PDA (polydopamine loaded biochar), MBC-PDA (polydopamine loaded magnetic biochar), BC-AlOOH (AlOOH loaded biochar), and BC-ZnCl (biochar modified by ZnCl)) were synthesized specifically for boron adsorption to utilize the superior adsorption capacity of biochar. All adsorbents were synthesized using straightforward experimental techniques from date palm cellulosic fibers as promising lignocellulose feedstock and subjected to various characterization methods.

View Article and Find Full Text PDF

The use of eggshells as a primary source for developing value-added materials has garnered significant attention in recent years due to their effectiveness as an excellent adsorbent and support. In this study, the Solid-State Dispersion (SSD) method was utilized to prepare composite photocatalysts of eggshells (ES)/TiO₂ in various ratios. TiO₂ and eggshell photocatalysts were also employed as control samples.

View Article and Find Full Text PDF

Light-Programmable g-CN Microrobots with Negative Photogravitaxis for Photocatalytic Antibiotic Degradation.

Research (Wash D C)

January 2025

Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno 61200, Czech Republic.

Microrobots enhance contact with pollutants through their movement and flow-induced mixing, substantially improving wastewater treatment efficiency beyond traditional diffusion-limited methods. g-CN is an affordable and environmentally friendly photocatalyst that has been extensively researched in various fields such as biomedicine and environmental remediation. However, compared to other photocatalytic materials like TiO and ZnO, which are widely used in the fabrication of micro- and nanorobots, research on g-CN for these applications is still in its early stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!