Recent investigations demonstrate that some coastal wetlands are atmospheric methane sinks, but the regulatory mechanisms are not clear. Here, the main pathway and operator of methane oxidation in the Yellow River Delta (YRD) wetland, a methane source in the wet season but a methane sink in the dry season, were investigated. The anaerobic oxidation of methane (AOM) and aerobic methane oxidation (AMO) abilities of wetland soil were measured, and the microbial community structure was analyzed. The experimental results showed that AMO was active throughout the year. In contrast, AOM was weak and even undetected. The microbial community analysis indicated that Methylomicrobium and Methylobacter potentially scavenged methane in oxic environments. A representative strain of Methylobacter, which was isolated from the soil, presented a strong AMO ability at high concentrations of methane and air. Overall, this study showed that active AMO performing by Methylobacter may account for methane sink in the YRD wetland during the dry season. Our research not only has determined the way in which methane sinks are formed but also identified the potential functional microbes. In particular, we confirmed the function of potential methanotroph by pure culture. Our research provides biological evidence for why some wetlands have methane sink characteristics, which may help to understand the global methane change mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.135383 | DOI Listing |
New Phytol
January 2025
Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
Recent studies have shown that stem fluxes, although highly variable among trees, can alter the strength of the methane (CH) sink or nitrous oxide (NO) source in some forests, but the patterns and magnitudes of these fluxes remain unclear. This study investigated the drivers of subdaily and seasonal variations in stem and soil CH, NO and carbon dioxide (CO) fluxes. CH, NO and CO fluxes were measured continuously for 19 months in individual stems of two tree species, Eperua falcata (Aubl.
View Article and Find Full Text PDFSci Total Environ
January 2025
Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China. Electronic address:
Increased global nitrogen (N) and phosphorus (P) inputs caused by human activities can significantly impact methane (CH) uptake in terrestrial ecosystems. Forest soils, as the largest CH sink among terrestrial ecosystems, play a crucial role in mitigating global warming. However, the effects of long-term N and P additions on CH sink and the associated microbial mechanisms in subtropical forest soils remain unclear.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095, United States.
Wetland methane emissions are the primary natural contributor to the global methane budget, accounting for approximately one-third of total emissions from natural and anthropogenic sources. Anaerobic oxidation of methane (AOM) serves as the major sink of methane in anoxic wetland sediments, where electron acceptors are present, thereby effectively mitigating its emissions. Nevertheless, environmental controls on electron acceptors, in particular, the ubiquitous iron oxides, involved in AOM are poorly understood.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
Agriculture serves as both a source and a sink of global greenhouse gases (GHGs), with agricultural intensification continuing to contribute to GHG emissions. Climate-smart agriculture, encompassing both nature- and technology-based actions, offers promising solutions to mitigate GHG emissions. We synthesized global data, between 1990 and 2021, from the Food and Agriculture Organization (FAO) of the United Nations to analyze the impacts of agricultural activities on global GHG emissions from agricultural land, using structural equation modeling.
View Article and Find Full Text PDFSci Total Environ
January 2025
Applied Chemistry and Environmental Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia. Electronic address:
Peatlands are important global stores of carbon. However, peatland disturbance, including climate change, can cause stored carbon to be released, shifting peatlands from net carbon sinks to net carbon sources. Yet, there is a paucity of data on the carbon cycling of Australian peatlands from which to inform effective management of the peatland carbon store.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!