Renal cell carcinoma (RCC) is associated with various genetic alterations. Although whole-genome/exome sequencing analysis has revealed that nuclear genome alterations are associated with clinical outcomes, the association between nucleotide alterations in the mitochondrial genome and RCC clinical outcomes remains unclear. In this study, we analyzed somatic mutations in the mitochondrial D-loop region, using RCC samples from 61 consecutive patients with localized RCC. Moreover, we analyzed the relationship between D-loop mutations and () mutations, which we previously found to be associated with clinical outcomes in localized RCC. Among the 61 localized RCCs, 34 patients (55.7%) had at least one mitochondrial D-loop mutation. The number of D-loop mutations was associated with larger tumor diameter (> 32 mm) and higher nuclear grade (≥ ISUP grade 3). Moreover, patients with D-loop mutations showed no differences in cancer-specific survival when compared with patients without D-loop mutations. However, the co-occurrence of D-loop and mutations improved the predictive accuracy of cancer-related deaths among our cohort, increasing the concordance index (C-index) from 0.757 to 0.810. Thus, we found that D-loop mutations are associated with adverse pathological features in localized RCC and may improve predictive accuracy for cancer-specific deaths when combined with mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947453 | PMC |
http://dx.doi.org/10.3390/genes10120998 | DOI Listing |
Int J Mol Sci
December 2024
Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland.
This study presents a comprehensive analysis of mitochondrial DNA (mtDNA) variations in dogs diagnosed with primary and recurrent tumours, employing Oxford Nanopore Technologies (ONT) for sequencing. Our investigation focused on mtDNA extracted from blood and tumour tissues of three dogs, aiming to pinpoint polymorphisms, mutations, and heteroplasmy levels that could influence mitochondrial function in cancer pathogenesis. Notably, we observed the presence of mutations in the D-loop region, especially in the VNTR region, which may be crucial for mitochondrial replication, transcription, and genome stability, suggesting its potential role in cancer progression.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.
View Article and Find Full Text PDFMicrobiol Immunol
December 2024
Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan.
Upon infection with the virus, cells increase the expression of cytidine deaminase APOBEC3 family genes. This leads to the accumulation of C-to-T mutations in the replicating viral genome and suppresses viral propagation. In contrast, herpesviruses, including Epstein-Barr virus (EBV), express genes that counteract APOBEC3 during lytic infection.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA.
Poly(ADP-ribose) polymerase1 (PARP1) plays a vital role in DNA repair and its inhibition in cancer cells may cause cell apoptosis. In this study, we investigated the effects of a PARP1 variant, V762A, which is strongly associated with several cancers in humans, on the inhibition of PARP1 by three FDA approved inhibitors: niraparib, rucaparib and talazoparib. Our work suggests that these inhibitors bind to the V762A mutant more effectively than to the wild-type (WT), with similar binding free energies between them.
View Article and Find Full Text PDFJ Struct Biol
December 2024
Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, SI-500, Nova Gorica, Slovenia. Electronic address:
The Helicase-Like Transcription Factor (HLTF) is member of the SWI/SNF-family of ATP dependent chromatin remodellers known primarily for maintaining genome stability. Biochemical and cellular assays support its multiple roles in DNA Damage Tolerance. However, the lack of sufficient structural data limits the comprehension of the molecular basis of its modes of action.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!