Sheets of autologous epidermal cells grown by expansion culture were used to cover small skin defects in seven patients with postoperative necroses, necroses due to temporal arteritis, varicose ulcers or after tangential excision of tattoos. Several transplantation techniques were used: backing of the cultured epithelia with vaseline gauze, Surfasoft, Adaptic, Silastic foil, culturing directly from Petriperm-foil. Meshed Silastic-foil proved to give the best support. Optimal take of the in-vitro epithelia (more than 80% of their surface area) was achieved only for fresh dermal wound-beds. The take was only moderate on chronic granulation tissue, but the transplants reduced the formation of fibrinous-necrotic material and favoured the formation of fresh granulation tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2008-1067882 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
Chronic wounds significantly contribute to disability and affect the mortality rate in diabetic patients. In addition, pressure ulcers, diabetic foot ulcers, arterial ulcers, and venous ulcers pose a significant health burden due to their associated morbidity and death. The complex healing process, environmental factors, and genetic factors have been identified as the rate-limiting stages of chronic wound healing.
View Article and Find Full Text PDFJID Innov
March 2025
Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
With the goal of studying skin wound healing and testing new drug treatments to enhance wound healing in rodent models, there is a clear need for improved splinting techniques to increase surgical efficiency and support routine wound monitoring. Splinted wound healing models humanize wound healing in rodents to prevent contraction and instead heal through granulation tissue deposition, increasing the relevance to human wound healing. Current technologies require suturing and heavy wrapping, leading to splint failure and cumbersome monitoring of the wound.
View Article and Find Full Text PDFIndian J Sex Transm Dis AIDS
December 2024
Department of Dermatology, Venereology and Leprology, Velammal Medical College Hospital and Research Institute, Madurai, Tamil Nadu, India.
Donovanosis is a rare bacterial sexually transmitted disease caused by Klebsiella granulomatis and has an indolent course. Clinically it manifests as an ulcer with exuberant granulation tissue most commonly in the genital and rarely in extragenital sites. Nowadays, case reports of Donovanosis are infrequent and are considered an ignored sexually transmitted infection in the current antibiotic era.
View Article and Find Full Text PDFFront Immunol
January 2025
International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.
Keloid scars (KS) and hypertrophic scars (HS) are fibroproliferative wound healing defects characterized by excessive accumulation of extracellular matrix (ECM) in the dermis of affected individuals. Although transforming growth factor (TGF)-β is known to be involved in the formation of KS and HS, the molecular mechanisms responsible for its activation remain unclear. In this study we investigated Granzyme B (GzmB), a serine protease with established roles in fibrosis and scarring through the cleavage of ECM proteins, as a potential new mediator of TGF-β activation in KS and HS.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!