Bone metastasis of breast cancer causes severe skeletal-related events and poor prognosis. Wensheng Zhuanggu Formula (WSZG), a traditional Chinese prescription, is used to adjunctively treat breast cancer bone metastases in clinical practice. This study was undertaken to investigate the antibone-metastatic activities and mechanisms of WSZG extract by evaluating the effect of this formula on the cross-talk between bone marrow-derived mesenchymal stem cells (BMSCs) and breast cancer cells in triggering epithelial-mesenchymal transition (EMT) in vivo and in vitro. The results demonstrated that BMSCs might enhance the invasive and metastatic potentials of breast cancer cells as a consequence of EMT induction through direct cell-to-cell contact. WSZG treatment remarkably suppressed motility, invasion, EMT-related gene, and protein markers in BMSC-conditioned breast cancer cells and ameliorated bone metastases and damages in nude mice following co-injection of BMSCs and MDA-MB-231BO breast cancer cells. Further investigation showed that the transforming growth factor-β1 (TGF-β1)/Smads pathway was an important mechanism enabling BMSCs to induce EMT occurrence of breast cancer cells. WSZG treatment reversed BMSC-induced EMT by downregulating TGF-β1/Smads signaling. Thus, WSZG extracts may be regarded as a potential antibone-metastatic agent for breast cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2019.109617 | DOI Listing |
Photochem Photobiol Sci
January 2025
Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.
Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimamichou, Kita-Ku, Niigata, Japan.
Purpose: Identification of the molecular subtypes in breast cancer allows to optimize treatment strategies, but usually requires invasive needle biopsy. Recently, non-invasive imaging has emerged as promising means to classify them. Magnetic resonance imaging is often used for this purpose because it is three-dimensional and highly informative.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA.
Purpose: Interstitial lung disease (ILD) is a well described and potentially fatal complication of trastuzumab-deruxtecan (T-DXd). It is currently unknown if specific monitoring is beneficial in the early detection of ILD in these patients. We describe the efficacy and feasibility of a novel ILD monitoring protocol in breast cancer patients treated with T-DXd at our institution.
View Article and Find Full Text PDFArch Microbiol
January 2025
Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), KST B.J. Habibie, Serpong, South Tangerang, 15314, Indonesia.
Antibacterial screening of endophytic fungi from Salacia intermedia identified Diaporthe longicolla as a potent strain exhibiting good activity against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa, with an MIC of 39.1 µg/mL. Scale-up fermentation and chromatographic purification of this strain yielded three known compounds, which were cytochalasin J (1), cytochalasin H (2), and dicerandrol C (3), as identified by liquid chromatography - high mass resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India.
This research demonstrates the design and development of a novel dual-targeting, pH-sensitive liposomal (pSL) formulation of 5-Fluorouracil (5-FU), , (5-FU-iRGD-FA-pSL) to manage breast cancer (BC). The motivation to explore this formulation is to overcome the challenges of systemic toxicity and non-specific targeting of 5-FU, a conventional chemotherapeutic agent. The proposed formulation also combines folic acid (FA) and iRGD peptides as targeting ligands to enhance tumor cell specificity and penetration, while the pH-sensitive liposomes ensure the controlled drug release in the acidic tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!