Brain drug delivery for effective treatment of neurodegenerative disorders is limited due to the selective permeability of blood brain barrier (BBB). During the past few years, development of novel delivery system has attracted considerable attention of formulation scientists to overcome the permeability limitation caused by BBB. Based on the outcomes of this study and taking into consideration of the unique characteristics of laponite, it can be further explored to deliver many other central nervous system acting drugs. In the present study, laponite (LAP) nanocomposites were exploited for the improved brain delivery of donepezil (DZ) following encapsulation approach due to their nano-size and positive charge at pH <9. The size of prepared nanocomposites was 53.7 ± 4.0 to 137.7 ± 11.0 nm. The drug was released in a sustained manner till 120 h in phosphate buffer saline (pH 7.4) and acid phthalate buffer (pH 4.0). LAPDZ formulations inhibited acetylcholinesterase approximately by 82%, significantly higher ( < 0.05) than plain DZ (30%). Swiss albino mice exhibited enhanced brain uptake of LAPDZ administered intravenous route. Promising pharmacokinetic parameters were observed in animals treated with LAPDZ. LAPDZ formulation showed half-life (t), volume of distribution (Vd) and clearance (Cl) as 5.53 ± 0.40 h, 0.129 ± 0.02 L, 0.015 ± 0.002 L/h, respectively. While DZ solution showed the same parameters as 1.06 ± 0.12 h, 0.168 ± 0.01 L, 0.106 ± 0.013 L/h, respectively. The brain uptake of LAPDZ formulation was improved with quintuplet t. Based on the results of present study, it is proposed that the formulated nanocomposite would result in improved patient compliance with therapeutic effect at lower doses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03639045.2019.1698594 | DOI Listing |
Environ Pollut
December 2024
Faculty of Agronomy and Veterinary Medicine, University of Brasília, 70910-970, Brasília, DF, Brazil. Electronic address:
Chem Asian J
December 2024
Birla Institute of Technology & Science Pilani - Hyderabad Campus, Chemistry department, Shameerpet, 500078, Hyderabad, INDIA.
The incorporation of photoactive organic dyes into layered inorganic materials enhances their optical and chemical properties, making them ideal for sensing applications. In this study, Bisindolyl methane (BIM)-based neutral probes were integrated with bentonite clay to explore their sensing capabilities. Probe 1 (unoxidized BIM) and Probe 2 (oxidized BIM) generally exhibited quenched luminescence in solution due to intramolecular rotations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
Zeolite membranes are considered ideal inorganic membrane materials for separating mixtures with molecular-level differences. However, their complex preparation process with excessive synthesis solutions for traditional hydrothermal heating methods leads to various drawbacks. Here, we describe a membrane preparation strategy involving an in situ interfacial transformation of the protomembrane without solvents.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India.
The retention and mobility of arsenic (As) in soil depend on various physical and chemical factors. The knowledge of the sorption-desorption chemistry of As in soil is necessary for predicting the fate and behavior of As in soil environments. Therefore, this study assessed different organic (sugarcane bagasse and vermicompost) and inorganic amendments (steel slag and fly ash) for their impact on sorption-desorption of As in texturally different contaminated soils (of sandy clay (SC) and sandy clay loam (SCL) texture) to understand the effect of amendments on As retention and mobility.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
ISTO, UMR 7327, CNRS, BRGM, OSUC, Université d'Orléans, 45071 Orléans, France.
Among all natural submicrosized phases, clay minerals are ubiquitous in soils and sedimentary rocks in nature as well as in engineered environments, and while clay minerals' adsorption properties have been studied extensively, their unique level of surface reactivity heterogeneities necessitates further investigation at the molecular level to understand and predict the influence of these heterogeneities on their macroscopic properties. In this study, we investigated the surface structures and desorption-free energies of U(VI) species (UO) and As(V) species (HAsO and HAsO) complexed at different edge surface reactive sites of a cis-vacant montmorillonite layer using first-principles molecular dynamics (FPMD). We show that U(VI) forms bidentate and tridentate complexes on montmorillonite edge surfaces, whereas As(V) monodentate complexes are the most stable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!