Reversing Unknown Quantum Transformations: Universal Quantum Circuit for Inverting General Unitary Operations.

Phys Rev Lett

Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.

Published: November 2019

Given a quantum gate implementing a d-dimensional unitary operation U_{d}, without any specific description but d, and permitted to use k times, we present a universal probabilistic heralded quantum circuit that implements the exact inverse U_{d}^{-1}, whose failure probability decays exponentially in k. The protocol employs an adaptive strategy, proven necessary for the exponential performance. It requires that k≥d-1, proven necessary for the exact implementation of U_{d}^{-1} with quantum circuits. Moreover, even when quantum circuits with indefinite causal order are allowed, k≥d-1 uses are required. We then present a finite set of linear and positive semidefinite constraints characterizing universal unitary inversion protocols and formulate a convex optimization problem whose solution is the maximum success probability for given k and d. The optimal values are computed using semidefinite programing solvers for k≤3 when d=2 and k≤2 for d=3. With this numerical approach we show for the first time that indefinite causal order circuits provide an advantage over causally ordered ones in a task involving multiple uses of the same unitary operation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.123.210502DOI Listing

Publication Analysis

Top Keywords

quantum circuit
8
unitary operation
8
quantum circuits
8
indefinite causal
8
causal order
8
quantum
6
reversing unknown
4
unknown quantum
4
quantum transformations
4
transformations universal
4

Similar Publications

This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.

View Article and Find Full Text PDF

Optical nonreciprocal devices are critical components in integrated photonic systems and scalable quantum technologies. We propose an all-optical approach to achieve integrated optical nonreciprocity utilizing a moving index grating. The grating is generated in a nonlinear optical waveguide through the Kerr effect by driving the waveguide with two counter-propagating pump fields of slightly different frequencies.

View Article and Find Full Text PDF

The intrinsic spontaneous and piezoelectric polarizations of GaN lead to the formation of triangular wells and barriers, resulting in the manifestation of chaotic transport models in GaN quantum well intersubband transition (ISBT) infrared detectors and giving rise to various adverse effects. The APSYS software was utilized to construct a novel GaN quantum well ISBT infrared detector in this study. By endeavoring to modify the quantum well structure, our objective was to precisely adjust the energy level of the first excited state (E1) to align with the apex of the triangular barrier.

View Article and Find Full Text PDF

Re-locative guided search optimized self-sparse attention enabled deep learning decoder for quantum error correction.

Sci Rep

January 2025

Department of Mathematics, School of Advanced Sciences, VIT-AP University, Besides AP Secretariate, Amaravati, Andhra Pradesh, 522237, India.

Heavy hexagonal coding is a type of quantum error-correcting coding in which the edges and vertices of a low-degree graph are assigned auxiliary and physical qubits. While many topological code decoders have been presented, it is still difficult to construct the optimal decoder due to leakage errors and qubit collision. Therefore, this research proposes a Re-locative Guided Search optimized self-sparse attention-enabled convolutional Neural Network with Long Short-Term Memory (RlGS2-DCNTM) for performing effective error correction in quantum codes.

View Article and Find Full Text PDF

Digital quantum simulation of cosmological particle creation with IBM quantum computers.

Sci Rep

January 2025

Departamento de Física Teórica, Universidad Autónoma de Madrid, 28049, Madrid, Spain.

We use digital quantum computing to simulate the creation of particles in a dynamic spacetime. We consider a system consisting of a minimally coupled massive quantum scalar field in a spacetime undergoing homogeneous and isotropic expansion, transitioning from one stationary state to another through a brief inflationary period. We simulate two vibration modes, positive and negative for a given field momentum, by devising a quantum circuit that implements the time evolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!