Higher-Order Topological Insulator in Twisted Bilayer Graphene.

Phys Rev Lett

Department of Physics, KAIST, Daejeon 34141, Republic of Korea.

Published: November 2019

Higher-order topological insulators are newly proposed topological phases of matter, whose bulk topology manifests as localized modes at two- or higher-dimensional lower boundaries. In this Letter, we propose the twisted bilayer graphenes with large angles as higher-order topological insulators, hosting topological corner charges. At large commensurate angles, the intervalley scattering opens up the bulk gap and the corner states occur at half filling. Based on both first-principles calculations and analytic analysis, we show the striking results that the emergence of the corner states do not depend on the choice of the specific angles as long as the underlying symmetries are intact. Our results show that the twisted bilayer graphene can serve as a robust candidate material of a two-dimensional higher-order topological insulator.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.123.216803DOI Listing

Publication Analysis

Top Keywords

higher-order topological
16
twisted bilayer
12
topological insulator
8
bilayer graphene
8
topological insulators
8
corner states
8
topological
5
higher-order
4
insulator twisted
4
graphene higher-order
4

Similar Publications

Graph neural networks in histopathology: Emerging trends and future directions.

Med Image Anal

January 2025

Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands; Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

Histopathological analysis of whole slide images (WSIs) has seen a surge in the utilization of deep learning methods, particularly Convolutional Neural Networks (CNNs). However, CNNs often fail to capture the intricate spatial dependencies inherent in WSIs. Graph Neural Networks (GNNs) present a promising alternative, adept at directly modeling pairwise interactions and effectively discerning the topological tissue and cellular structures within WSIs.

View Article and Find Full Text PDF

We demonstrate that a short oligonucleotide complementary to a G-quadruplex domain can invade this iconic, noncanonical DNA secondary structure in ways that profoundly influence the properties and differential occupancies of the resulting DNA polymorphic products. Our spectroscopic mapping of the conformational space of the associated reactants and products, both before and after strand invasion, yield unanticipated outcomes which reveal several overarching features. First, strand invasion induces the disruption of DNA secondary structural elements in both the invading strand (which can assume an iDNA tetrad structure) and the invaded species (a G-quadruplex).

View Article and Find Full Text PDF

Graph data is essential for modeling complex relationships among entities. Graph Neural Networks (GNNs) have demonstrated effectiveness in processing low-order undirected graph data; however, in complex directed graphs, relationships between nodes extend beyond first-order connections and encompass higher-order relationships. Additionally, the asymmetry introduced by edge directionality further complicates node interactions, presenting greater challenges for extracting node information.

View Article and Find Full Text PDF

On-Chip Elastic Wave Manipulations Based on Synthetic Dimension.

Phys Rev Lett

December 2024

Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.

Article Synopsis
  • Researchers are focusing on manipulating elastic waves in lower-dimensional mechanical metamaterials to design miniaturized elastic devices, but controlling these waves in higher dimensions is challenging.
  • This study introduces a structural parameter to explore on-chip Weyl physics in a silicon-on-insulator system, creating an in-plane pseudomagnetic field that facilitates robust energy transport through chiral Landau levels.
  • Unique boundary states are observed near the corners, differing from traditional topological states, and the use of synthetic dimensions allows for advanced multidimensional elastic wave manipulation and exploration of higher-dimensional physics on integrated platforms.
View Article and Find Full Text PDF

The understanding of phenomena falling outside the Ginzburg-Landau paradigm of phase transitions represents a key challenge in condensed matter physics. A famous class of examples is constituted by the putative deconfined quantum critical points between two symmetry-broken phases in layered quantum magnets, such as pressurised SrCu(BO). Experiments find a weak first-order transition, which simulations of relevant microscopic models can reproduce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!