Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While the usual approach to tailor the behavior of condensed matter and nanosized systems is the choice of material or finite-size or interfacial effects, topology alone may be the key. In the context of the motion of magnetic domain walls (DWs), known to suffer from dynamic instabilities with low mobilities, we report unprecedented velocities >600 m/s for DWs driven by spin-transfer torques in cylindrical nanowires made of a standard ferromagnetic material. The reason is the robust stabilization of a DW type with a specific topology by the Œrsted field associated with the current. This opens the route to the realization of predicted new physics, such as the strong coupling of DWs with spin waves above >600 m/s.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.217201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!