We report the first observation of D^{+}→τ^{+}ν_{τ} with a significance of 5.1σ. We measure B(D^{+}→τ^{+}ν_{τ})=(1.20±0.24_{stat}±0.12_{syst})×10^{-3}. Taking the world average B(D^{+}→μ^{+}ν_{μ})=(3.74±0.17)×10^{-4}, we obtain R_{τ/μ}=Γ(D^{+}→τ^{+}ν_{τ})/Γ(D^{+}→μ^{+}ν_{μ})=3.21±0.64_{stat}±0.43_{syst}., which is consistent with the standard model expectation of lepton flavor universality. Using external inputs, our results give values for the D^{+} decay constant f_{D^{+}} and the Cabibbo-Kobayashi-Maskawa matrix element |V_{cd}| that are consistent with, but less precise than, other determinations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.211802 | DOI Listing |
Rep Prog Phys
January 2025
European Organization for Nuclear Research, HCP, CH-1211 GENEVE 23, Geneva, 1211 Geneva 23, SWITZERLAND.
A search for light long-lived particles decaying to displaced jets is presented, using a data sample of proton-proton collisions at a center-of-mass energy of 13.6 TeV, corresponding to an integrated luminosity of 34.7 fb$^{-1}$, collected with the CMS detector at the CERN LHC in 2022.
View Article and Find Full Text PDFEur Phys J C Part Fields
December 2024
Department of Physics and Astronomy, University College London, London, WC1E 6BT UK.
Phys Rev Lett
December 2024
School of Physics, Peking University, Beijing 100871, China.
In recent years, energy correlators have emerged as a powerful tool to explore the field theoretic structure of strong interactions at particle colliders. In this Letter we initiate a novel study of the nonperturbative power corrections to the projected N-point energy correlators in the limit where the angle between the detectors is small. Using the light-ray operator product expansion as a guiding principle, we derive the power corrections in terms of two nonperturbative quantities describing the fragmentation of quarks and gluons.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056 Aachen, Germany and Department of Physics, University of Virginia, Charlottesville, Virginia 22904-4714, USA.
The phenomena of dark matter and the baryon asymmetry pose two of the most pressing questions in today's fundamental physics. Conversion-driven freeze-out has emerged as a successful mechanism to generate the observed dark matter relic density. It supports thermalization of dark matter despite its very weak couplings, aligning with the null results from direct and indirect detection experiments.
View Article and Find Full Text PDFNat Commun
October 2024
Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, tanford, CA, USA.
The intensive nutrient requirements needed to sustain T cell activation and proliferation, combined with competition for nutrients within the tumor microenvironment, raise the prospect that glucose availability may limit CAR-T cell function. Here, we seek to test the hypothesis that stable overexpression (OE) of the glucose transporter GLUT1 in primary human CAR-T cells would improve their function and antitumor potency. We observe that GLUT1OE in CAR-T cells increases glucose consumption, glycolysis, glycolytic reserve, and oxidative phosphorylation, and these effects are associated with decreased T cell exhaustion and increased Th differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!