Laser cooling is a well-established technique for the creation of ensembles of ultracold neutral atoms or positive ions. This ability has opened many exciting new research fields over the past 40 years. However, no negatively charged ions have been directly laser cooled because a cycling transition is very rare in atomic anions. Efforts of more than a decade currently have La^{-} as the most promising candidate. We report on experimental and theoretical studies supporting Th^{-} as a new promising candidate for laser cooling. The measured and calculated electron affinities of Th are, respectively, 4901.35(48) cm^{-1} and 4832 cm^{-1}, or 0.607 690(60) and 0.599 eV, almost a factor of 2 larger than the previous theoretical value of 0.368 eV. The ground state of Th^{-} is determined to be 6d^{3}7s^{2} ^{4}F_{3/2}^{e} rather than 6d^{2}7s^{2}7p ^{4}G_{5/2}^{o}. The consequence of this is that there are several strong electric dipole transitions between the bound levels arising from configurations 6d^{3}7s^{2} and 6d^{2}7s^{2}7p in Th^{-}. The potential laser-cooling transition is ^{2}S_{1/2}^{o}↔^{4}F_{3/2}^{e} with a wavelength of 2.6 μm. The zero nuclear spin and hence lack of hyperfine structure in Th^{-} reduces the potential complications in laser cooling as encountered in La^{-}, making Th^{-} a new and exciting candidate for laser cooling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.203002 | DOI Listing |
Materials (Basel)
December 2024
Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 90-003 Łódź, Poland.
This paper presents a novel approach to address the issue of uneven temperature distribution in one-dimensional laser arrays, specifically in gallium nitride edge-emitting lasers emitting green light of 540 nm. The results were obtained using heat flow numerical analysis, which included an optimization method specifically developed for this type of array. It was demonstrated that thermal optimization of a one-dimensional edge-emitting laser array can be achieved by adjusting the placement of the emitters within the array and the size of the top gold contact, without changing the overall dimensions of the device.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
Stretchable electronics have significant applications in wearable applications. However, the extremely low thermal conductivity of elastic encapsulation hinders heat dissipation, leading to performance degradation. For instance, stretchable thermoelectric devices (TEDs) can be used for skin temperature regulation, but poor thermal management limits their cooling performance.
View Article and Find Full Text PDFACS Nano
January 2025
Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
Recently, two-dimensional (2D) van der Waals (vdW) magnetic materials have emerged as a promising platform for studying exchange bias (EB) phenomena due to their atomically flat surfaces and highly versatile stacking configurations. Although complex spin configurations between 2D vdW interfaces introduce challenges in understanding their underlying mechanisms, they can offer more possibilities in realizing effective manipulations. In this study, we present a spin-orthogonal arranged 2D FeGaTe (FGaT)/CrSBr vdW heterostructure, realizing the EB effect with the bias field as large as 1730 Oe at 2 K.
View Article and Find Full Text PDFLasers Surg Med
January 2025
Main Line Center for Laser Surgery, Ardmore, Pennsylvania, USA.
Background: Poikiloderma of Civatte is a benign skin condition characterized by reticulate erythema and hyperpigmentation in sun-exposed areas, predominantly on the neck, cheeks, and chest. Chronic UV exposure leads to vascular proliferation and red cell extravasation resulting in hemosiderin and melanin deposition. While many light-based modalities have been utilized to treat the disorder, the significant vascularity makes it ideally suited for treatment with vascular lasers.
View Article and Find Full Text PDFLasers Surg Med
January 2025
Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
Objectives: This work highlights the methods used to develop a multi-pulse 1726 nm laser system combined with bulk air-cooling for selective sebaceous gland (SG) photothermolysis using thermal imaging and software algorithms. This approach enables treating to a desired tissue temperature and depth to provide a safe, effective, reproducible, and durable treatment of acne.
Methods: We designed and built a 1726 nm laser system with a 40 W maximum power output, a highly controlled air-cooling device, and a thermal camera in the handpiece, which permits real-time temperature monitoring of the epidermis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!