Recently, magnetic antiskyrmions were discovered in MnPtPdSn, an inverse tetragonal Heusler compound that is nominally a ferrimagnet, but which can only be formed with substantial Mn vacancies. The vacancies reduce considerably the compensation of the moments between the two expected antiferromagnetically coupled Mn sub-lattices so that the overall magnetization is very high and the compound is almost a "ferromagnet". Here, we report the observation of antiskyrmions in a second inverse tetragonal Heusler compound, MnRhIrSn, which can be formed stoichiometrically without any Mn vacancies and which thus exhibits a much smaller magnetization. Individual and lattices of antiskyrmions can be stabilized over a wide range of temperature from near room temperature to 100 K, the base temperature of the Lorentz transmission electron microscope used to image them. In low magnetic fields helical spin textures are found which evolve into antiskyrmion structures in the presence of small magnetic fields. A weaker Dzyaloshinskii-Moriya interaction (DMI), that stabilizes the antiskyrmions, is expected for the 4d element Rh as compared to the 5d element Pt, so that the observation of antiskyrmions in MnRhIrSn establishes the intrinsic stability of antiskyrmions in these Heusler compounds. Moreover, the finding of antiskyrmions with substantially lower magnetization promises, via chemical tuning, even zero moment antiskyrmions with important technological import.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953472 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.9b02973 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!