Machine Learning-Guided Approach for Studying Solvation Environments.

J Chem Theory Comput

Department of Chemical and Petroleum Engineering Swanson School of Engineering , University of Pittsburgh, Pittsburgh 15261 , Pennsylvania , United States.

Published: January 2020

Molecular-level understanding and characterization of solvation environments are often needed across chemistry, biology, and engineering. Toward practical modeling of local solvation effects of any solute in any solvent, we report a static and all-quantum mechanics-based cluster-continuum approach for calculating single-ion solvation free energies. This approach uses a global optimization procedure to identify low-energy molecular clusters with different numbers of explicit solvent molecules and then employs the smooth overlap for atomic positions learning kernel to quantify the similarity between different low-energy solute environments. From these data, we use sketch maps, a nonlinear dimensionality reduction algorithm, to obtain a two-dimensional visual representation of the similarity between solute environments in differently sized microsolvated clusters. After testing this approach on different ions having charges 2+, 1+, 1-, and 2-, we find that the solvation environment around each ion can be seen to usually become more similar in hand with its calculated single-ion solvation free energy. Without needing either dynamics simulations or an a priori knowledge of local solvation structure of the ions, this approach can be used to calculate solvation free energies within 5% of experimental measurements for most cases, and it should be transferable for the study of other systems where dynamics simulations are not easily carried out.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.9b00605DOI Listing

Publication Analysis

Top Keywords

solvation free
12
solvation
8
solvation environments
8
local solvation
8
single-ion solvation
8
free energies
8
solute environments
8
dynamics simulations
8
approach
5
machine learning-guided
4

Similar Publications

Ion Networks in Water-based Li-ion Battery Electrolytes.

Acc Chem Res

January 2025

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.

View Article and Find Full Text PDF

Extending the MST Model to Large Biomolecular Systems: Parametrization of the ddCOSMO-MST Continuum Solvation Model.

J Comput Chem

January 2025

Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona, Spain.

Continuum solvation models such as the polarizable continuum model and the conductor-like screening model are widely used in quantum chemistry, but their application to large biosystems is hampered by their computational cost. Here, we report the parametrization of the Miertus-Scrocco-Tomasi (MST) model for the prediction of hydration free energies of neutral and ionic molecules based on the domain decomposition formulation of COSMO (ddCOSMO), which allows a drastic reduction of the computational cost by several orders of magnitude. We also introduce several novelties in MST, like a new definition of atom types based on hybridization and an automatic setup of the cavity for charged regions.

View Article and Find Full Text PDF

Selecting Initial Conditions for Trajectory-Based Nonadiabatic Simulations.

Acc Chem Res

January 2025

Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.

ConspectusPhotochemical reactions have always been the source of a great deal of mystery. While classified as a type of chemical reaction, no doubts are allowed that the general tenets of ground-state chemistry do not directly apply to photochemical reactions. For a typical chemical reaction, understanding the critical points of the ground-state potential (free) energy surface and embedding them in a thermodynamics framework is often enough to infer reaction yields or characteristic time scales.

View Article and Find Full Text PDF

Long-standing challenges including notorious side reactions at the Zn anode, low Zn anode utilization, and rapid cathode degradation at low current densities hinder the advancement of aqueous zinc-ion batteries (AZIBs). Inspired by the critical role of capping agents in nanomaterials synthesis and bulk crystal growth, a series of capping agents are employed to demonstrate their applicability in AZIBs. Here, it is shown that the preferential adsorption of capping agents on different Zn crystal planes, coordination between capping agents and Zn ions, and interactions with metal oxide cathodes enable preferred Zn (002) deposition, water-deficient Zn ion solvation structure, and a dynamic cathode-electrolyte interface.

View Article and Find Full Text PDF

Context: Riboflavin (RF), also known as B2 vitamin, is the precursor to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), two co-enzymes involved in many electron transport processes. Interactions of the isoalloxazine ring, common to all three compounds, are of great interest due to their biological function in flavoproteins and relevance in the transport by the carrier protein leading to development of drug delivery strategies and non-invasive diagnostics techniques. Based on protein crystallographic data, a computational investigation of the interactions in the complexes between lumiflavin, a model compound, and aromatic amino acids, tyrosine and tryptophan, was pursued with the goal of characterizing noncovalent interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!