F Magnetic Resonance Activity-Based Sensing Using Paramagnetic Metals.

Acc Chem Res

Department of Chemistry , University of Texas at Austin, Austin , Texas 78712-1224 , United States.

Published: January 2020

Fluorine magnetic resonance imaging (F MRI) is a promising bioimaging technique due to the favorable magnetic resonance properties of the F nucleus and the lack of detectable biological background signal. A range of imaging agents have been developed for this imaging modality including small molecule perfluorocarbons, fluorine-rich macromolecules and nanoparticles, and paramagnetic metal-containing agents. Incorporation of paramagnetic metals into fluorinated agents provides a unique opportunity to manipulate relaxation and chemical shift properties of F nuclei. Paramagnetic centers will enhance relaxation rates of nearby F nuclei through paramagnetic relaxation enhancement (PRE). Further, metals with anisotropic unpaired electrons can induce changes in F chemical shift through pseudocontact shift (PCS) effects. PRE and PCS are dependent on the nature of the metal center itself, the molecular scaffold surrounding it, and the position of the F nucleus relative to the metal center. One intriguing prospect in F magnetic resonance molecular imaging is to design responsive agents that can serve to provide a read out biological activity, including the activity of enzymes, redox activity, the activity of ions, etc. Paramagnetic agents are well suited for this activity-based sensing as metal complexes can be designed to respond to specific biological activities and give a corresponding F response that results from changes in the metal complex structure and subsequently PRE/PCS. Broadly speaking, when designing paramagnetic F MR biosensors, one can envision that in response to changes in analyte activity, the number of unpaired electrons of the metal changes or the ligand conformation/chemical composition changes. This Account highlights activity-based probes from the Que lab that harness paramagnetic metals to modulate F signal. We discuss probes that use conversion from Cu to Cu in response to reducing environments to dequench the F MR signal. Probes in which oxidants convert Co to Co, resulting in chemical shift responses, are also described. Finally, we explore our foray into using Ni coordination switching to furnish probes with different F signals when they are converted between 4-coordinate square planar and higher coordination numbers. A major barrier for F MR molecular imaging is in vivo application, as signal sensitivity is relatively low, requiring long imaging times to detect imaging agents. Nanoparticle and macromolecular agents show promise due to their higher fluorine density and longer circulation times; however, their analyte scope is limited to analytes that induce cleavage events. A grand challenge for researchers in this area is adapting lessons learned from small molecule paramagnetic probes with promising in vitro activities for the development of probes with enhanced in vivo utility for basic biological and clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.9b00352DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
16
paramagnetic metals
12
chemical shift
12
paramagnetic
9
activity-based sensing
8
imaging agents
8
small molecule
8
nuclei paramagnetic
8
unpaired electrons
8
metal center
8

Similar Publications

Powdered germinated Thai rice () is widely utilised as a dietary supplement to support health and prevent diseases. This study investigated the bioactive compound profile of water extracts from beverage powder made from Thai germinated brown rice (GBRE) and assessed its anticancer effects on cholangiocarcinoma, lung cancer, and liver cancer cell lines. Proton nuclear magnetic resonance (1H-NMR) revealed 23 metabolites, including amino acids, sugar, phenolic compounds and nitrogenous compounds.

View Article and Find Full Text PDF

Previous research has shown that smoking tobacco is associated with changes or differences in brain volume and cortical thickness, resulting in a smaller brain volume and decreased cortical thickness in smokers compared with non-smokers. However, the effects of smokeless tobacco on brain volume and cortical thickness remain unclear. This study aimed to investigate whether the use of shammah, a nicotine-containing smokeless tobacco popular in Middle Eastern countries, is associated with differences in brain volume and thickness compared with non-users and to assess the influence of shammah quantity and type on these effects.

View Article and Find Full Text PDF

Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch.

Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI.

View Article and Find Full Text PDF

Background: Volume alterations in the parietal subregion have received less attention in Alzheimer's disease (AD), and their role in predicting conversion of mild cognitive impairment (MCI) to AD and cognitively normal (CN) to MCI remains unclear. In this study, we aimed to assess the volumetric variation of the parietal subregion at different cognitive stages in AD and to determine the role of parietal subregions in CN and MCI conversion.

Methods: We included 662 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 228 CN, 221 early MCI (EMCI), 112 late MCI (LMCI), and 101 AD participants.

View Article and Find Full Text PDF

The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!