A new method for quantification of osimertinib (OSIM) in human plasma using a high-performance liquid chromatography-tandem mass spectrometry method was developed and validated. Methanol was used for protein precipitation and pazopanib as internal standard. Separation was performed on a HyPURITY®C analytical column (50 × 2.1 mm; 3 μm) using a gradient elution of ammonium acetate in water and ammonium acetate in methanol, both acidified with formic acid 0.1%. Detection and quantification of OSIM and pazopanib was performed using a triple quadruple mass spectrometer after electrospray ionization. This method led to robust results, as the selectivity, carryover, precision and accuracy all met pre-specified requirements. OSIM was stable in human serum when stored at -80°C. Reduced stability was found when stored at 2-4°C or room temperature. Degradation of OSIM slowed down in EDTA-plasma and acidified human serum. The limited stability of OSIM at room temperature should be considered for transport and sample preparation. Plasma samples should be frozen as soon as possible and sample preparation should be performed on dry-ice. In the future, EDTA-plasma and sample acidification may be used to improve OSIM stability at room temperature. However, more research and validation of such an approach are required.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bmc.4771DOI Listing

Publication Analysis

Top Keywords

room temperature
12
human plasma
8
ammonium acetate
8
human serum
8
sample preparation
8
osim
6
validation analytical
4
method
4
analytical method
4
method hplc-ms/ms
4

Similar Publications

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy.

Commun Chem

January 2025

Energy & Materials Transition, Netherlands Organization for Applied Scientific Research (TNO), Urmonderbaan 22, Geleen, 6167RD, The Netherlands.

Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis.

View Article and Find Full Text PDF

Polyamide/silica/sodium alginate in-situ composite: Synthesis and application in electrochemical probing for Pb/Cd.

Int J Biol Macromol

January 2025

College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, PR China. Electronic address:

In this study, polyamide/silica/sodium alginate (SA) composite (PA-Si-SA) was successfully prepared in one-step benzoxazine-isocyanide chemistry (BIC)/sol-gel process at room temperature. The chemical structure and fundamental properties of PA-Si-SA were characterized by FT-IR, solid-state C NMR, XPS, XRD, SEM, BET and TG, etc. The presence of anionic SA and diverse N, O-containing functional segments (amide, tertiary amine, alkyl/phenol -OH, Si-O-Si, and COO) in PA-Si-SA endows it synergistic complexation capability toward Pb and Cd.

View Article and Find Full Text PDF

CO2-driven Oxygen Vacancy Diffusion and Healing on TiO2(110) at Ambient Pressure.

Angew Chem Int Ed Engl

January 2025

KAIST - Korea Advanced Institute of Science and Technology, Department of Chemistry, Center for Nanomaterials and Chemical Reaction, IBS, 373-1, Guseong Dong, Yuseong Gu, 305-701, Daejeon, KOREA, REPUBLIC OF.

Understanding how TiO2 interacts with CO2 at the molecular level is crucial in the CO2 reduction toward value-added energy sources. Here, we report in-situ observations of the CO2 activation process on the reduced TiO2(110) surface at room temperature using ambient pressure scanning tunneling microscopy. We found that oxygen vacancies (Vo) diffuse dynamically along the bridging oxygen (Obr) rows of the TiO2(110) surface under ambient CO2(g) environments.

View Article and Find Full Text PDF

The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!