As a representative transition metal, iron plays a key role in chemical activities of atmospheric particulate matter (PM), being involved in particle-related free radical generation and adverse health effects. However, limited understanding of the structure and properties of individual micrometer-sized particulates obscures investigating the contributions of iron toward chemical activities. Here, we describe multidimensional analytical strategies to characterize the mass, spatial distribution, and chemical forms of iron in single haze particles using synchrotron radiation techniques. We first used X-ray fluorescence imaging to quantify the masses of multiple metals and yielded distribution maps of transition metals, which revealed the types of elements that tend to occur together. Additionally, we employed nanocomputed tomography to assess the spatial distribution of iron and observed that iron exists as small aggregates and is concentrated primarily in subsurface regions. We also combined X-ray absorption near structures with scanning transmission X-ray microscopy to quantify the ferrous and ferric forms and mapped their distributions in individual particles, which probably attribute chemical activity of iron. In conclusion, we demonstrated the power of synchrotron radiation-based techniques to study heretofore inaccessible chemical information in single haze particles, which may provide important clues about iron chemistry as a source of Fenton reactions and health effects. The multifaceted analytical approaches exhibit high sensitivity (subfemtogram per particle or ∼0.2 fg/μm) toward multiple elements and are promising to be used for studying other concepts such as the solubility of aerosol iron, the heterogeneous oxidation of organic matters and SO, and the formation and the aging of haze particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b03913 | DOI Listing |
Sci Rep
December 2024
College of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China.
The scattering of tiny particles in the atmosphere causes a haze effect on remote sensing images captured by satellites and similar devices, significantly disrupting subsequent image recognition and classification. A generative adversarial network named TRPC-GAN with texture recovery and physical constraints is proposed to mitigate this impact. This network not only effectively removes haze but also better preserves the texture information of the original remote sensing image, thereby enhancing the visual quality of the dehazed image.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
December 2024
Air Quality Research Center, University of California, Davis, California, USA.
The IMPROVE program (Interagency Monitoring of PROtected Visual Environments) tracks long-term trends in the composition and optics of regional haze aerosols in the United States. The absorptance of red (633-nm) light is monitored by filter photometry of 24 h-integrated samples of fine particulate matter (PM 2.5).
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.
Arctic haze has attracted considerable scientific interest for decades. However, limited studies have focused on the molecular composition of atmospheric particulate matter that contributes to Arctic haze. Our study collected atmospheric particles at Alert in the Canadian high Arctic from mid-February to early May 2000.
View Article and Find Full Text PDFEnviron Int
December 2024
Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain. Electronic address:
Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (b) and BrC (b) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China. Electronic address:
In the current development of the plastics industry, the use of biodegradable and recycled plastics not only effectively reduces the volume of landfills and incineration but also significantly decreases environmental damage. However, the extensive application of biodegradable polylactic acid (PLA) is limited by its poor toughness and thermal properties. The study introduced recycled linear low-density polyethylene (R-LLDPE) and ethylene-octene copolymer (POE) to modify PLA, primarily based on their excellent toughness and thermal resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!